What is the value of [tex]$x$[/tex] in the equation [tex]$8x - 2y = 48$[/tex], when [tex][tex]$y = 4$[/tex][/tex]?

A. 6
B. 7
C. 14
D. 48



Answer :

To solve for [tex]\(x\)[/tex] in the equation [tex]\(8x - 2y = 48\)[/tex] when [tex]\(y = 4\)[/tex], follow these steps:

1. Start by substituting the value of [tex]\(y\)[/tex] into the equation.
[tex]\[ 8x - 2(4) = 48 \][/tex]

2. Simplify the expression inside the parentheses:
[tex]\[ 8x - 8 = 48 \][/tex]

3. To isolate [tex]\(x\)[/tex], add 8 to both sides of the equation:
[tex]\[ 8x - 8 + 8 = 48 + 8 \][/tex]
[tex]\[ 8x = 56 \][/tex]

4. Finally, divide both sides of the equation by 8 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{56}{8} \][/tex]
[tex]\[ x = 7 \][/tex]

Thus, the value of [tex]\(x\)[/tex] is [tex]\(7\)[/tex]. Therefore, the correct answer is:
7