Answered

What is the kinetic energy of a toy truck with a mass of [tex]$0.75 \, \text{kg}$[/tex] and a velocity of [tex]$4 \, \text{m/s}$[/tex]?

(Formula: [tex]KE = \frac{1}{2} m v^2[/tex])

A. [tex]3 \, \text{J}[/tex]
B. [tex]6 \, \text{J}[/tex]
C. [tex]12 \, \text{J}[/tex]
D. [tex]24 \, \text{J}[/tex]



Answer :

To find the kinetic energy of the toy truck, we will use the formula for kinetic energy:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

Here, the variables are:
- [tex]\( m = 0.75 \)[/tex] kg (mass of the toy truck),
- [tex]\( v = 4 \)[/tex] m/s (velocity of the toy truck).

Let's plug these values into the formula:

[tex]\[ KE = \frac{1}{2} \times 0.75 \times (4)^2 \][/tex]

First, we calculate the square of the velocity:

[tex]\[ (4)^2 = 16 \][/tex]

Next, we multiply this result by the mass:

[tex]\[ 0.75 \times 16 = 12 \][/tex]

Finally, we take half of this product:

[tex]\[ KE = \frac{1}{2} \times 12 = 6 \][/tex]

Therefore, the kinetic energy of the toy truck is:

[tex]\[ 6 \, \text{J} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{6 \, \text{J}} \][/tex]