In which scenario will the two objects have the least gravitational force between them?

A. Mass of object 1 = [tex]12 \, \text{kg}[/tex]
Mass of object 2 = [tex]12 \, \text{kg}[/tex]
Distance between objects = [tex]1.5 \, \text{m}[/tex]

B. Mass of object 1 = [tex]15 \, \text{kg}[/tex]
Mass of object 2 = [tex]12 \, \text{kg}[/tex]
Distance between objects = [tex]1.5 \, \text{m}[/tex]

C. Mass of object 1 = [tex]15 \, \text{kg}[/tex]
Mass of object 2 = [tex]12 \, \text{kg}[/tex]
Distance between objects = [tex]0.5 \, \text{m}[/tex]

D. Mass of object 1 = [tex]12 \, \text{kg}[/tex]
Mass of object 2 = [tex]12 \, \text{kg}[/tex]
Distance between objects = [tex]0.5 \, \text{m}[/tex]



Answer :

To determine the scenario with the least gravitational force between two objects, we will utilize the formula for gravitational force:

[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]

where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, and [tex]\( r \)[/tex] is the distance between the centers of the two masses.

Let's go through each scenario step-by-step:

### Scenario A:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 12 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 1.5 m

Gravitational force equation:
[tex]\[ F_A = G \frac{12 \times 12}{(1.5)^2} \][/tex]
[tex]\[ F_A = G \frac{144}{2.25} \][/tex]
[tex]\[ F_A = 64 G \][/tex]

Numerically, this gives:
[tex]\[ F_A = 4.271552 \times 10^{-9} \, \text{N} \][/tex]

### Scenario B:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 15 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 1.5 m

Gravitational force equation:
[tex]\[ F_B = G \frac{15 \times 12}{(1.5)^2} \][/tex]
[tex]\[ F_B = G \frac{180}{2.25} \][/tex]
[tex]\[ F_B = 80 G \][/tex]

Numerically, this gives:
[tex]\[ F_B = 5.339440 \times 10^{-9} \, \text{N} \][/tex]

### Scenario C:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 15 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 0.5 m

Gravitational force equation:
[tex]\[ F_C = G \frac{15 \times 12}{(0.5)^2} \][/tex]
[tex]\[ F_C = G \frac{180}{0.25} \][/tex]
[tex]\[ F_C = 720 G \][/tex]

Numerically, this gives:
[tex]\[ F_C = 48.05496 \times 10^{-9} \, \text{N} \][/tex]

### Scenario D:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 12 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 0.5 m

Gravitational force equation:
[tex]\[ F_D = G \frac{12 \times 12}{(0.5)^2} \][/tex]
[tex]\[ F_D = G \frac{144}{0.25} \][/tex]
[tex]\[ F_D = 576 G \][/tex]

Numerically, this gives:
[tex]\[ F_D = 38.443968 \times 10^{-9} \, \text{N} \][/tex]

### Conclusion:
Comparing the calculated forces:
- [tex]\( F_A = 4.271552 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_B = 5.339440 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_C = 48.05496 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_D = 38.443968 \times 10^{-9} \, \text{N} \)[/tex]

The smallest force is [tex]\( F_A = 4.271552 \times 10^{-9} \, \text{N} \)[/tex], which occurs in Scenario A.

Thus, the scenario with the least gravitational force between the objects is Scenario A.