What is the value of [tex]\( b \)[/tex] in the equation below?

[tex]\[
9^{-8} \cdot 9^{-2} = a^b
\][/tex]

A. [tex]\(-10\)[/tex]

B. [tex]\(-6\)[/tex]

C. 9

D. 16



Answer :

To find the value of [tex]\( b \)[/tex] in the equation [tex]\( 9^{-8} \cdot 9^{-2} = a^b \)[/tex], let's proceed step-by-step:

1. Applying properties of exponents:
When you multiply terms with the same base, you add the exponents. Therefore,
[tex]\[ 9^{-8} \cdot 9^{-2} = 9^{(-8 + -2)} \][/tex]

2. Simplify the exponent:
Combine the exponents on the right-hand side:
[tex]\[ (-8) + (-2) = -10 \][/tex]
So,
[tex]\[ 9^{-8} \cdot 9^{-2} = 9^{-10} \][/tex]

3. Comparing with [tex]\( a^b \)[/tex]:
Now, [tex]\( 9^{-10} \)[/tex] should be written in the form [tex]\( a^b \)[/tex]. Given [tex]\( a = 9 \)[/tex], we can directly equate the exponents on both sides:
[tex]\[ 9^{-10} = 9^b \][/tex]

4. Finding [tex]\( b \)[/tex]:
By equating the exponents from the bases that are the same, we get:
[tex]\[ b = -10 \][/tex]

Therefore, the value of [tex]\( b \)[/tex] is
\boxed{-10}