Answer :
To solve for [tex]\( r \)[/tex] in the given formula:
[tex]\[ C = 2 \pi r \][/tex]
we need to isolate [tex]\( r \)[/tex].
1. Start with the given formula:
[tex]\[ C = 2 \pi r \][/tex]
2. Divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ \frac{C}{2 \pi} = r \][/tex]
3. Simplify the right-side:
[tex]\[ r = \frac{C}{2 \pi} \][/tex]
So, the correct expression for [tex]\( r \)[/tex] in terms of [tex]\( C \)[/tex] is:
[tex]\[ r = \frac{C}{2 \pi} \][/tex]
Now, let's match this expression with the given choices:
A. [tex]\( r = \frac{C}{2 \pi} \)[/tex] - This is correct.
B. [tex]\( r = \frac{C - \pi}{2} \)[/tex] - This is incorrect because it does not effectively isolate [tex]\( r \)[/tex] according to the given formula.
C. [tex]\( r = 2 \pi C \)[/tex] - This is incorrect because it multiplies [tex]\( C \)[/tex] by [tex]\( 2 \pi \)[/tex] instead of dividing by [tex]\( 2 \pi \)[/tex].
D. [tex]\( r = C - 2 \pi \)[/tex] - This is incorrect because it subtracts instead of dividing by [tex]\( 2 \pi \)[/tex].
Thus, the correct choice is:
[tex]\[ \boxed{1} \][/tex]
So, you should select:
A. [tex]\( r = \frac{C}{2 \pi} \)[/tex]
[tex]\[ C = 2 \pi r \][/tex]
we need to isolate [tex]\( r \)[/tex].
1. Start with the given formula:
[tex]\[ C = 2 \pi r \][/tex]
2. Divide both sides of the equation by [tex]\( 2 \pi \)[/tex]:
[tex]\[ \frac{C}{2 \pi} = r \][/tex]
3. Simplify the right-side:
[tex]\[ r = \frac{C}{2 \pi} \][/tex]
So, the correct expression for [tex]\( r \)[/tex] in terms of [tex]\( C \)[/tex] is:
[tex]\[ r = \frac{C}{2 \pi} \][/tex]
Now, let's match this expression with the given choices:
A. [tex]\( r = \frac{C}{2 \pi} \)[/tex] - This is correct.
B. [tex]\( r = \frac{C - \pi}{2} \)[/tex] - This is incorrect because it does not effectively isolate [tex]\( r \)[/tex] according to the given formula.
C. [tex]\( r = 2 \pi C \)[/tex] - This is incorrect because it multiplies [tex]\( C \)[/tex] by [tex]\( 2 \pi \)[/tex] instead of dividing by [tex]\( 2 \pi \)[/tex].
D. [tex]\( r = C - 2 \pi \)[/tex] - This is incorrect because it subtracts instead of dividing by [tex]\( 2 \pi \)[/tex].
Thus, the correct choice is:
[tex]\[ \boxed{1} \][/tex]
So, you should select:
A. [tex]\( r = \frac{C}{2 \pi} \)[/tex]
Answer:
A. [tex]r=\frac{C}{2\pi}[/tex]
Step-by-step explanation:
C = 2πr (Starting equation)
C/(2π) = r (Divide both sides by 2π)