This table can be used to organize Gigi's credit card balances and payments over 6 months. The annual percentage rate on the credit card is [tex]$14 \%$[/tex].

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Gigi's Credit Card Payments } \\
\hline Month & Balance & Payment & Interest Rate & Interest Charged \\
\hline 1 & [tex]$\$[/tex] 650[tex]$ & $[/tex]\[tex]$ 300$[/tex] & 0.01167 & [tex]$\$[/tex] 4.08[tex]$ \\
\hline 2 & $[/tex]\[tex]$ 354.08$[/tex] & [tex]$\$[/tex] 50[tex]$ & 0.01167 & \\
\hline 3 & $[/tex]\[tex]$ 307.63$[/tex] & [tex]$\$[/tex] 50[tex]$ & 0.01167 & \\
\hline 4 & $[/tex]\[tex]$ 260.64$[/tex] & [tex]$\$[/tex] 50[tex]$ & 0.01167 & \\
\hline 5 & $[/tex]\[tex]$ 213.10$[/tex] & [tex]$\$[/tex] 50[tex]$ & 0.01167 & \\
\hline 6 & $[/tex]\[tex]$ 165$[/tex] & [tex]$\$[/tex] 50[tex]$ & 0.01167 & \\
\hline \hline
\end{tabular}

What is the amount of interest charged for the first 6 months?

$[/tex]\[tex]$[/tex] [tex]$\square$[/tex]



Answer :

To determine the total amount of interest charged on Gigi's credit card over the first six months, we can break down the balance, payments, and interest charges for each month step-by-step.

### Starting Balance and Interest Rate
- Balance Month 1: \[tex]$650 - Annual Percentage Rate: 14% - Monthly Interest Rate: 0.01167 (given) ### Month 1 - Balance: \$[/tex]650
- Payment: \[tex]$300 - Interest Charged: \$[/tex]650 * 0.01167 ≈ \[tex]$4.08 ### Month 2 - New Balance: \$[/tex]650 - \[tex]$300 + \$[/tex]4.08 = \[tex]$354.08 - Payment: \$[/tex]50
- Interest Charged: \[tex]$354.08 * 0.01167 ≈ \$[/tex]4.13

### Month 3
- New Balance: \[tex]$354.08 - \$[/tex]50 + \[tex]$4.13 = \$[/tex]308.21
- Payment: \[tex]$50 - Interest Charged: \$[/tex]308.21 * 0.01167 ≈ \[tex]$3.60 ### Month 4 - New Balance: \$[/tex]308.21 - \[tex]$50 + \$[/tex]3.60 = \[tex]$261.81 - Payment: \$[/tex]50
- Interest Charged: \[tex]$261.81 * 0.01167 ≈ \$[/tex]3.06

### Month 5
- New Balance: \[tex]$261.81 - \$[/tex]50 + \[tex]$3.06 = \$[/tex]214.87
- Payment: \[tex]$50 - Interest Charged: \$[/tex]214.87 * 0.01167 ≈ \[tex]$2.51 ### Month 6 - New Balance: \$[/tex]214.87 - \[tex]$50 + \$[/tex]2.51 = \[tex]$167.38 - Payment: \$[/tex]50
- Interest Charged: \[tex]$167.38 * 0.01167 ≈ \$[/tex]1.95

### Summing Up Interest Charges
- Month 1: \[tex]$4.08 - Month 2: \$[/tex]4.13
- Month 3: \[tex]$3.60 - Month 4: \$[/tex]3.06
- Month 5: \[tex]$2.51 - Month 6: \$[/tex]1.95

Total Interest Charged over the first 6 months:
[tex]\[ \$4.08 + \$4.13 + \$3.60 + \$3.06 + \$2.51 + \$1.95 \approx 23.03 \][/tex]

Thus, the total amount of interest charged over the first 6 months is:
[tex]\[ \$23.03 \][/tex]