Type the correct answer in each box.

Ella rolls a die and then flips a coin. The sample space for this compound event is represented in the table ( [tex]$H$[/tex] is heads and [tex]$T$[/tex] is tails). Complete the table and the sentence beneath it.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{6}{|c|}{ Die } \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \multirow{2}{*}{ Coin } & heads & [tex]$H -1$[/tex] & [tex]$H -2$[/tex] & [tex]$H -3$[/tex] & [tex]$H -4$[/tex] & [tex]$H -5$[/tex] & [tex]$H -6$[/tex] \\
\hline & tails & [tex]$T -1$[/tex] & [tex]$T -2$[/tex] & [tex]$T -3$[/tex] & [tex]$T -4$[/tex] & [tex]$T -5$[/tex] & [tex]$T -6$[/tex] \\
\hline
\end{tabular}

The size of the sample space is [tex]$\square$[/tex].



Answer :

Let's fill in the missing cells in the table and determine the size of the sample space.

First, the missing cells can be identified as follows:
1. In the row for heads (Coin) and the column for die roll 4:
- The cell should be "H-4"
2. In the row for tails (Coin) and the column for die roll 2:
- The cell should be "T-2"
3. In the row for tails (Coin) and the column for die roll 6:
- The cell should be "T-6"

Updating the table with this information:

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
& & \multicolumn{6}{|c|}{ Die } \\
\hline
& & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\multirow{2}{*}{ Coin } & heads & [tex]$H -1$[/tex] & [tex]$H -2$[/tex] & [tex]$H -3$[/tex] & [tex]$H-4$[/tex] & H-5 & [tex]$H -6$[/tex] \\
\hline
& tails & [tex]$T -1$[/tex] & [tex]$T-2$[/tex] & [tex]$T -3$[/tex] & T-4 & T-5 & [tex]$T-6$[/tex] \\
\hline
\end{tabular}

Next, we calculate the size of the sample space. For each result on the coin (heads (H) or tails (T)), there are 6 possible outcomes of the die (1 through 6). Therefore, the sample space size is:

2 outcomes (coin) [tex]\( \times \)[/tex] 6 outcomes (die) = 12

So, the size of the sample space is 12.

Therefore, the table is updated and completed as shown above, and the sentence provided would be filled as:

The size of the sample space is [tex]\(12\)[/tex].