To solve for [tex]\( y \)[/tex] in the given formula [tex]\( w = \frac{x - y}{2} - z \)[/tex], follow these steps:
1. Start with the given equation:
[tex]\[
w = \frac{x - y}{2} - z
\][/tex]
2. Clear the fraction by multiplying every term by 2:
[tex]\[
2w = x - y - 2z
\][/tex]
3. Rearrange to isolate the [tex]\( y \)[/tex]-term:
First, add [tex]\( y \)[/tex] to both sides:
[tex]\[
2w + y = x - 2z
\][/tex]
4. Solve for [tex]\( y \)[/tex]:
Subtract [tex]\( 2w \)[/tex] from both sides:
[tex]\[
y = x - 2w - 2z
\][/tex]
Simplify to get:
[tex]\[
y = x - 2(w + z)
\][/tex]
So, the correct answer is:
[tex]\[
\boxed{\text{A. } y = x - 2(w + z)}
\][/tex]