Select the correct answer.

Given the following formula, solve for [tex]y[/tex].

[tex]\[ w = \frac{x - y}{2} - z \][/tex]

A. [tex]y = x - 2(w + z)[/tex]
B. [tex]y = 2w + z - x[/tex]
C. [tex]y = x - (2w + z)[/tex]
D. [tex]y = 2(w + z) - x[/tex]



Answer :

To solve for [tex]\( y \)[/tex] in the given formula [tex]\( w = \frac{x - y}{2} - z \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ w = \frac{x - y}{2} - z \][/tex]

2. Clear the fraction by multiplying every term by 2:
[tex]\[ 2w = x - y - 2z \][/tex]

3. Rearrange to isolate the [tex]\( y \)[/tex]-term:
First, add [tex]\( y \)[/tex] to both sides:
[tex]\[ 2w + y = x - 2z \][/tex]

4. Solve for [tex]\( y \)[/tex]:
Subtract [tex]\( 2w \)[/tex] from both sides:
[tex]\[ y = x - 2w - 2z \][/tex]

Simplify to get:
[tex]\[ y = x - 2(w + z) \][/tex]

So, the correct answer is:

[tex]\[ \boxed{\text{A. } y = x - 2(w + z)} \][/tex]