Answered

Evaluate the expression when [tex]x = 4[/tex] and [tex]y = 2[/tex].

[tex]\[
\frac{4y + x^2}{y}
\][/tex]

Simplify your answer as much as possible.



Answer :

Sure, let's evaluate the given expression step-by-step when [tex]\( x = 4 \)[/tex] and [tex]\( y = 2 \)[/tex].

The expression to evaluate is:
[tex]\[ \frac{4y + x^2}{y} \][/tex]

1. Substitute the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- [tex]\( x = 4 \)[/tex]
- [tex]\( y = 2 \)[/tex]

Substitute [tex]\( x \)[/tex] and [tex]\( y \)[/tex] into the expression:
[tex]\[ \frac{4(2) + 4^2}{2} \][/tex]

2. Calculate [tex]\( 4y \)[/tex] and [tex]\( x^2 \)[/tex]:
- [tex]\( 4y = 4 \cdot 2 = 8 \)[/tex]
- [tex]\( x^2 = 4^2 = 16 \)[/tex]

Now the expression looks like:
[tex]\[ \frac{8 + 16}{2} \][/tex]

3. Add the terms in the numerator:
[tex]\[ 8 + 16 = 24 \][/tex]

So the expression now becomes:
[tex]\[ \frac{24}{2} \][/tex]

4. Divide the numerator by the denominator:
[tex]\[ \frac{24}{2} = 12 \][/tex]

So, the value of the expression when [tex]\( x = 4 \)[/tex] and [tex]\( y = 2 \)[/tex] is:
[tex]\[ 12.0 \][/tex]