Sure! Let's solve this problem step by step.
We need to simplify the following expression:
[tex]\[
\frac{0.00275 \times 0.00081}{0.0025 \times 0.09}
\][/tex]
1. Calculate the numerator:
[tex]\[
0.00275 \times 0.00081 = 2.2275 \times 10^{-6} \text{ (standard notation is } 2.2275\ e^{-6} \text{)}
\][/tex]
2. Calculate the denominator:
[tex]\[
0.0025 \times 0.09 = 0.000225
\][/tex]
3. Simplify the fraction by dividing the numerator by the denominator:
[tex]\[
\frac{2.2275 \times 10^{-6}}{0.000225} = 0.009899999999999999
\][/tex]
4. Express the result in standard form:
The simplified fraction result is [tex]\( 0.009899999999999999 \)[/tex], which can be written in standard form as [tex]\( 9.9 \times 10^{-3} \)[/tex].
So, the simplified form of the given expression in standard form is:
[tex]\[
9.9 \times 10^{-3}
\][/tex]