What is the value of [tex]\( m \)[/tex] in this equality?

[tex]\[ 3 \times \sqrt{27} = 3^m \][/tex]

Give your answer as a whole number or as a fraction in its simplest form.



Answer :

To solve for [tex]\( m \)[/tex] in the given equation [tex]\( 3 \times \sqrt{27} = 3^m \)[/tex], we need to simplify the left-hand side and express it in a form that allows us to compare it directly to the right-hand side.

### Step-by-Step Solution:

1. Simplify the left-hand side:
[tex]\[ 3 \times \sqrt{27} \][/tex]
First, express 27 as a power of 3:
[tex]\[ 27 = 3^3 \][/tex]
Thus, the square root of 27 is:
[tex]\[ \sqrt{27} = \sqrt{3^3} = 3^{3/2} \][/tex]
Substituting this back into the expression gives:
[tex]\[ 3 \times \sqrt{27} = 3 \times 3^{3/2} \][/tex]

2. Combine the terms:
[tex]\[ 3 \times 3^{3/2} \][/tex]
Using the property of exponents [tex]\( a^b \times a^c = a^{b+c} \)[/tex], we can combine the terms:
[tex]\[ 3^1 \times 3^{3/2} = 3^{1 + 3/2} \][/tex]
Simplify the exponent:
[tex]\[ 1 + \frac{3}{2} = \frac{2}{2} + \frac{3}{2} = \frac{5}{2} \][/tex]
So we have:
[tex]\[ 3 \times \sqrt{27} = 3^{5/2} \][/tex]

3. Compare to the right-hand side:
[tex]\[ 3^{5/2} = 3^m \][/tex]
Since the bases are equal, we can set the exponents equal to each other:
[tex]\[ m = \frac{5}{2} \][/tex]

### Conclusion:
The value of [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{5}{2} \][/tex]