Which expression is equivalent to the given expression?

[tex]\[
\frac{20 a^8 b^2}{4 a^2 b}
\][/tex]

A. [tex]\(5 a^{10} b^3\)[/tex]

B. [tex]\(5 a^4 b^2\)[/tex]

C. [tex]\(5 a^6 b\)[/tex]

D. [tex]\(5 a^{16} b^2\)[/tex]



Answer :

To simplify the given expression, let's break it down step-by-step:

Given expression:
[tex]\[ \frac{20 a^8 b^2}{4 a^2 b} \][/tex]

1. Simplify the coefficients:
[tex]\[ \frac{20}{4} = 5 \][/tex]

2. Simplify the [tex]\( a \)[/tex] terms using the rule of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:
[tex]\[ \frac{a^8}{a^2} = a^{8-2} = a^6 \][/tex]

3. Simplify the [tex]\( b \)[/tex] terms using the rule of exponents [tex]\(\frac{b^m}{b^n} = b^{m-n}\)[/tex]:
[tex]\[ \frac{b^2}{b} = b^{2-1} = b \][/tex]

Putting it all together, the simplified expression is:
[tex]\[ 5 a^6 b \][/tex]

Hence, the expression equivalent to the given expression
[tex]\[ \frac{20 a^8 b^2}{4 a^2 b} \][/tex]
is:
[tex]\[ 5 a^6 b \][/tex]

So, the correct choice is:
[tex]\[ \boxed{5 a^6 b} \][/tex]