Answer :
Geno started with the expression [tex]\(90 - (18 + -2)(-3)\)[/tex].
1. He first needs to simplify within the parentheses:
[tex]\[ 18 + -2 = 16 \][/tex]
2. Substitute this result back into the expression:
[tex]\[ 90 - 16(-3) \][/tex]
3. Next, perform the multiplication:
[tex]\[ 16 \times -3 = -48 \][/tex]
4. Substitute this result back into the expression:
[tex]\[ 90 - (-48) \][/tex]
5. Simplify the expression by remembering that subtracting a negative is equivalent to adding the positive counterpart:
[tex]\[ 90 + 48 \][/tex]
6. Finally, perform the addition:
[tex]\[ 90 + 48 = 138 \][/tex]
So, the final result of the expression [tex]\(90 - (18 + -2)(-3)\)[/tex] is:
[tex]\[ 138 \][/tex]
The interim result during the calculation of the multiplication within the parentheses was:
[tex]\[ -48 \][/tex]
Therefore, the complete solution is:
[tex]\[ \begin{array}{l} 90-(18+-2)(-3) \\ 90-(16)(-3) \\ 90 - (-48) \\ 90 + 48 \\ 138 \end{array} \][/tex]
1. He first needs to simplify within the parentheses:
[tex]\[ 18 + -2 = 16 \][/tex]
2. Substitute this result back into the expression:
[tex]\[ 90 - 16(-3) \][/tex]
3. Next, perform the multiplication:
[tex]\[ 16 \times -3 = -48 \][/tex]
4. Substitute this result back into the expression:
[tex]\[ 90 - (-48) \][/tex]
5. Simplify the expression by remembering that subtracting a negative is equivalent to adding the positive counterpart:
[tex]\[ 90 + 48 \][/tex]
6. Finally, perform the addition:
[tex]\[ 90 + 48 = 138 \][/tex]
So, the final result of the expression [tex]\(90 - (18 + -2)(-3)\)[/tex] is:
[tex]\[ 138 \][/tex]
The interim result during the calculation of the multiplication within the parentheses was:
[tex]\[ -48 \][/tex]
Therefore, the complete solution is:
[tex]\[ \begin{array}{l} 90-(18+-2)(-3) \\ 90-(16)(-3) \\ 90 - (-48) \\ 90 + 48 \\ 138 \end{array} \][/tex]