Enter the correct answer in the box.

Use the power of a power property to simplify the numeric expression.

[tex] \left(9^{\frac{1}{4}}\right)^{\frac{7}{2}}= [/tex]

[tex]$\qquad$[/tex]



Answer :

To simplify the expression [tex]\(\left(9^{\frac{1}{4}}\right)^{\frac{7}{2}}\)[/tex] using the power of a power property, we'll follow these steps:

1. Recall the power of a power property: [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].

2. Apply the property to the expression: [tex]\(\left(9^{\frac{1}{4}}\right)^{\frac{7}{2}}\)[/tex]:

[tex]\[ \left(9^{\frac{1}{4}}\right)^{\frac{7}{2}} = 9^{\left(\frac{1}{4} \times \frac{7}{2}\right)} \][/tex]

3. Multiply the exponents:

[tex]\[ \frac{1}{4} \times \frac{7}{2} = \frac{7}{8} \][/tex]

4. Write the expression with the new exponent:

[tex]\[ 9^{\frac{7}{8}} \][/tex]

Therefore, the simplified numeric expression is:

[tex]\[ 9^{\frac{7}{8}} \][/tex]

Finally, evaluating [tex]\(9^{\frac{7}{8}}\)[/tex] results in approximately:

[tex]\[ 6.8385211708643325 \][/tex]

So, [tex]\(\left(9^{\frac{1}{4}}\right)^{\frac{7}{2}} = 6.8385211708643325\)[/tex].