Select the correct answer.

Use the power of a quotient property to answer the question. Which expression equals [tex]\left(\frac{2}{x}\right)^{\frac{1}{5}}[/tex]?

A. [tex]\frac{10}{x^{\frac{1}{b}}}[/tex]
B. [tex]\frac{2^5}{x^5}[/tex]
C. [tex]\frac{2^{\frac{1}{5}}}{x^{\frac{1}{6}}}[/tex]
D. [tex]\frac{x^{\frac{1}{5}}}{2^{\frac{1}{5}}}[/tex]



Answer :

To determine the correct expression for [tex]\(\left(\frac{2}{x}\right)^{\frac{1}{5}}\)[/tex], we can use the power of a quotient property. Let's proceed step by step to find the equivalent expression.

1. Understand the Power of a Quotient Rule:
The power of a quotient property states that:
[tex]\[ \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \][/tex]
for any real numbers [tex]\(a\)[/tex] and [tex]\(b\)[/tex] (where [tex]\(b \neq 0\)[/tex]) and any real number [tex]\(n\)[/tex].

2. Apply the Power of a Quotient Rule:
Given the expression [tex]\(\left(\frac{2}{x}\right)^{\frac{1}{5}}\)[/tex], we can apply the power of a quotient rule:
[tex]\[ \left(\frac{2}{x}\right)^{\frac{1}{5}} = \frac{2^{\frac{1}{5}}}{x^{\frac{1}{5}}} \][/tex]

3. Identify the Correct Option:
Now we compare our simplified expression [tex]\(\frac{2^{\frac{1}{5}}}{x^{\frac{1}{5}}}\)[/tex] with the provided options:
- [tex]\(\frac{10}{x^{\frac{1}{b}}}\)[/tex]
- [tex]\(\frac{2^5}{x^5}\)[/tex]
- [tex]\(\frac{2^{\frac{1}{5}}}{x^{\frac{1}{6}}}\)[/tex]
- [tex]\(\frac{x^{\frac{1}{5}}}{2^{\frac{1}{5}}}\)[/tex]

The correct expression that matches our result is:
[tex]\[ \frac{2^{\frac{1}{5}}}{x^{\frac{1}{5}}} \][/tex]

These correspond to the option [tex]\(\frac{2^{\frac{1}{5}}}{x^{\frac{1}{5}}}\)[/tex], and this is indeed the third option in the given list.

Therefore, the correct answer is:
[tex]\[ \boxed{\frac{2^{\frac{1}{5}}}{x^{\frac{1}{5}}}} \][/tex]