Answer :

To solve the equation

[tex]\[ \frac{8}{y - 2} = \frac{4}{4y + 6} \][/tex]

we need to find the value of [tex]\( y \)[/tex] that satisfies it. Follow these steps to solve it:

1. Cross-Multiply: When we have an equation of the form [tex]\( \frac{a}{b} = \frac{c}{d} \)[/tex], we can cross-multiply to get

[tex]\[ a \cdot d = b \cdot c \][/tex]

Applying this to our equation:

[tex]\[ 8 \cdot (4y + 6) = 4 \cdot (y - 2) \][/tex]

2. Distribute: Distribute the constants through the parentheses:

[tex]\[ 8 \cdot 4y + 8 \cdot 6 = 4 \cdot y - 4 \cdot 2 \][/tex]

[tex]\[ 32y + 48 = 4y - 8 \][/tex]

3. Isolate [tex]\( y \)[/tex]: Let's collect all terms involving [tex]\( y \)[/tex] on one side of the equation and constant terms on the other side:

[tex]\[ 32y + 48 = 4y - 8 \][/tex]

Subtract [tex]\( 4y \)[/tex] from both sides:

[tex]\[ 32y - 4y + 48 = -8 \][/tex]

[tex]\[ 28y + 48 = -8 \][/tex]

Subtract 48 from both sides:

[tex]\[ 28y = -8 - 48 \][/tex]

[tex]\[ 28y = -56 \][/tex]

4. Solve for [tex]\( y \)[/tex]: Divide both sides by 28:

[tex]\[ y = \frac{-56}{28} \][/tex]

[tex]\[ y = -2 \][/tex]

Therefore, the solution to the equation is

[tex]\( y = -2 \)[/tex]

Hence,

[tex]\[ y = -2 \][/tex]