Simplify the following expression:

[tex]\[ x^4 + 3x^3 - 2x^3 - 5x^2 - x + x^2 + x + 1 + 7x^4 \][/tex]

A. [tex]\( 8x^4 + x^3 - 4x^2 + 0x \)[/tex]
B. [tex]\( 8x^4 + x^3 - 4x^2 + 1 \)[/tex]
C. [tex]\( 8x^4 + 5x^3 + 4x^2 + 1 \)[/tex]
D. [tex]\( 8x^4 + 5x^3 + 4x^2 + 0x + 1 \)[/tex]



Answer :

To simplify the given expression:

[tex]\[ x^4 + 3x^3 - 2x^3 - 5x^2 - x + x^2 + x + 1 + 7x^4 \][/tex]

we begin by combining like terms. Let's break it down step-by-step:

1. Combine the [tex]\(x^4\)[/tex] terms:
[tex]\[ x^4 + 7x^4 = 8x^4 \][/tex]

2. Combine the [tex]\(x^3\)[/tex] terms:
[tex]\[ 3x^3 - 2x^3 = x^3 \][/tex]

3. Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ -5x^2 + x^2 = -4x^2 \][/tex]

4. Combine the [tex]\(x\)[/tex] terms:
[tex]\[ -x + x = 0x \][/tex]

5. Combine the constant terms:
[tex]\[ 1 \][/tex]

Putting it all together:

[tex]\[ 8x^4 + x^3 - 4x^2 + 0x + 1 \][/tex]

Since [tex]\(0x\)[/tex] does not contribute to the final simplified expression, we can exclude it:

[tex]\[ 8x^4 + x^3 - 4x^2 + 1 \][/tex]

Therefore, the simplified form of the given expression is:

[tex]\[ \boxed{8x^4 + x^3 - 4x^2 + 1} \][/tex]

The correct answer from the provided choices is:
B. [tex]\(8x^4 + x^3 - 4x^2 + 1\)[/tex]