Carbon monoxide [tex]\(( CO )\)[/tex] reacts with hydrogen [tex]\(\left( H_2 \right)\)[/tex] to form methane [tex]\(\left( CH_4 \right)\)[/tex] and water [tex]\(\left( H_2O \right)\)[/tex].
[tex]\[
CO(g) + 3H_2(g) \longleftrightarrow CH_4(g) + H_2O(g)
\][/tex]

The reaction is at equilibrium at [tex]\(1,000 \text{ K}\)[/tex]. The equilibrium constant of the reaction is 3.90. At equilibrium, the concentrations are as follows:
[tex]\[
\begin{array}{l}
[CO] = 0.30 \text{ M} \\
\left[ H_2 \right] = 0.10 \text{ M} \\
\left[ H_2O \right] = 0.020 \text{ M}
\end{array}
\][/tex]

What is the equilibrium concentration of [tex]\( CH_4 \)[/tex] expressed in scientific notation?

A. [tex]\( 5.9 \times 10^{-2} \)[/tex]

B. [tex]\( 5.9 \times 10^2 \)[/tex]

C. [tex]\( 0.059 \)[/tex]

D. [tex]\( 0.0059 \)[/tex]



Answer :

To determine the equilibrium concentration of methane [tex]\(CH_4\)[/tex], we can start with the equilibrium expression based on the reaction:

[tex]\[ \text{CO} (g) + 3 \text{H}_2 (g) \longleftrightarrow \text{CH}_4 (g) + \text{H}_2\text{O} (g) \][/tex]

The equilibrium constant expression for this reaction is given by:

[tex]\[ K_{eq} = \frac{[\text{CH}_4][\text{H}_2\text{O}]}{[\text{CO}][\text{H}_2]^3} \][/tex]

We are provided with:
- [tex]\(K_{eq} = 3.90\)[/tex]
- [tex]\([\text{CO}] = 0.30 \, M\)[/tex]
- [tex]\([\text{H}_2] = 0.10 \, M\)[/tex]
- [tex]\([\text{H}_2\text{O}] = 0.020 \, M\)[/tex]

We need to find the equilibrium concentration of [tex]\(\text{CH}_4\)[/tex], denoted as [tex]\([CH_4] = x\)[/tex].

Rearranging the equilibrium expression to solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{K_{eq} \times [\text{CO}] \times [\text{H}_2]^3}{[\text{H}_2\text{O}]} \][/tex]

Substituting the known values into the equation:

[tex]\[ x = \frac{3.90 \times 0.30 \times (0.10)^3}{0.020} \][/tex]

Breaking it down step-by-step:

1. Calculate [tex]\((0.10)^3\)[/tex]:
[tex]\[ (0.10)^3 = 0.001 \][/tex]

2. Multiply [tex]\(3.90 \times 0.30 \times 0.001\)[/tex]:
[tex]\[ 3.90 \times 0.30 \times 0.001 = 0.00117 \][/tex]

3. Divide by [tex]\(0.020\)[/tex]:
[tex]\[ \frac{0.00117}{0.020} = 0.0585 \][/tex]

Thus, the equilibrium concentration of [tex]\(\text{CH}_4\)[/tex] is:

[tex]\[ \boxed{0.0585} \][/tex]

Expressing this in scientific notation:

[tex]\[ \boxed{5.9 \times 10^{-2}} \][/tex]