Let's complete the table and correct any errors in the provided columns. Here's the table with final calculations based on the correct data:
[tex]\[
\begin{tabular}{|c|c|c|c|}
\hline
\text{Raw data, } x & x - \overline{x} & (x - \overline{x})^2 \\
\hline
115 & -9 & 81 \\
\hline
128 & 4 & 16 \\
\hline
144 & 20 & 400 \\
\hline
142 & 18 & 324 \\
\hline
134 & 10 & 100 \\
\hline
110 & -14 & 196 \\
\hline
123 & -1 & 1 \\
\hline
118 & -6 & 36 \\
\hline
120 & -4 & 16 \\
\hline
106 & -18 & 324 \\
\hline
\sum (x - \overline{x})^2 & & 1494 \\
\hline
\end{tabular}
\][/tex]
The sample variance, [tex]\( s^2 \)[/tex], is calculated using the formula:
[tex]\[
s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}
\][/tex]
where [tex]\( n \)[/tex] is the number of data points, which in this case is 10.
Given [tex]\( \sum (x - \overline{x})^2 = 1494 \)[/tex]:
[tex]\[
s^2 = \frac{1494}{10 - 1} = \frac{1494}{9} = 166
\][/tex]
Therefore, the sample variance [tex]\( s^2 \)[/tex] is 166.