Step two: Fill in the table below and find the sample variance, [tex]s^2[/tex].

(Note: You do not need to show your work. Only enter the final calculation for each step. If you are using a calculator, be sure to put parentheses around negative values to show that the entire value is squared. Example: [tex](-2)^2=4[/tex], rather than [tex]-2^2=-4[/tex].)

\begin{tabular}{|c|c|c|c|}
\hline
Raw data, [tex]x[/tex] & [tex]x-\bar{x}[/tex] & [tex](x-\bar{x})^2[/tex] \\
\hline
115 & 7 & 49 \\
\hline
128 & 6 & 36 \\
\hline
144 & 22 & 484 \\
\hline
142 & 20 & 400 \\
\hline
134 & 12 & 144 \\
\hline
110 & -12 & 144 \\
\hline
123 & -1 & 1 \\
\hline
118 & -4 & 16 \\
\hline
120 & -2 & 4 \\
\hline
106 & -2 & 256 \\
\hline
[tex]\Sigma(x-\bar{x})^2[/tex] & & 1534 \\
\hline
\end{tabular}



Answer :

Let's complete the table and correct any errors in the provided columns. Here's the table with final calculations based on the correct data:

[tex]\[ \begin{tabular}{|c|c|c|c|} \hline \text{Raw data, } x & x - \overline{x} & (x - \overline{x})^2 \\ \hline 115 & -9 & 81 \\ \hline 128 & 4 & 16 \\ \hline 144 & 20 & 400 \\ \hline 142 & 18 & 324 \\ \hline 134 & 10 & 100 \\ \hline 110 & -14 & 196 \\ \hline 123 & -1 & 1 \\ \hline 118 & -6 & 36 \\ \hline 120 & -4 & 16 \\ \hline 106 & -18 & 324 \\ \hline \sum (x - \overline{x})^2 & & 1494 \\ \hline \end{tabular} \][/tex]

The sample variance, [tex]\( s^2 \)[/tex], is calculated using the formula:

[tex]\[ s^2 = \frac{\sum (x - \overline{x})^2}{n - 1} \][/tex]

where [tex]\( n \)[/tex] is the number of data points, which in this case is 10.

Given [tex]\( \sum (x - \overline{x})^2 = 1494 \)[/tex]:
[tex]\[ s^2 = \frac{1494}{10 - 1} = \frac{1494}{9} = 166 \][/tex]

Therefore, the sample variance [tex]\( s^2 \)[/tex] is 166.