Hexagon DEFGHI is translated 8 units down and 3 units to the right. If the coordinates of the pre-image of point [tex]\(F\)[/tex] are [tex]\((-9, 2)\)[/tex], what are the coordinates of [tex]\(F^{\prime}\)[/tex]?

A. [tex]\((-17, 5)\)[/tex]
B. [tex]\((-6, -6)\)[/tex]
C. [tex]\((-17, -1)\)[/tex]
D. [tex]\((-12, -6)\)[/tex]



Answer :

To find the coordinates of [tex]\( F' \)[/tex] after translating point [tex]\( F \)[/tex], we follow these steps carefully:

1. Identify the original coordinates: The coordinates of the pre-image of point [tex]\( F \)[/tex] are given as [tex]\((-9, 2)\)[/tex].

2. Determine the translation values:
- The point is translated 3 units to the right, which affects the x-coordinate.
- The point is translated 8 units down, which affects the y-coordinate.

3. Apply the translation to the x-coordinate:
- Moving 3 units to the right increases the x-coordinate. This means we add 3 to the original x-coordinate.
[tex]\[ x' = -9 + 3 = -6 \][/tex]

4. Apply the translation to the y-coordinate:
- Moving 8 units down decreases the y-coordinate. This means we subtract 8 from the original y-coordinate.
[tex]\[ y' = 2 - 8 = -6 \][/tex]

5. Combine the new coordinates: After applying the translations, the new coordinates of [tex]\( F' \)[/tex] are [tex]\((-6, -6)\)[/tex].

Thus, the coordinates of [tex]\( F' \)[/tex] are [tex]\(\boxed{(-6, -6)}\)[/tex].