What is the value of [tex]\( s \)[/tex] in the equation [tex]\( 3r = 10 + 5s \)[/tex], when [tex]\( r = 10 \)[/tex]?

A. 4
B. 8
C. 100
D. 200



Answer :

To find the value of [tex]\( s \)[/tex] in the equation [tex]\( 3r = 10 + 5s \)[/tex] when [tex]\( r = 10 \)[/tex], follow these detailed steps:

1. Substitute [tex]\( r \)[/tex] with 10 in the equation:

[tex]\[ 3(10) = 10 + 5s \][/tex]

2. Simplify the left side of the equation:

[tex]\[ 30 = 10 + 5s \][/tex]

3. Subtract 10 from both sides to isolate the term involving [tex]\( s \)[/tex]:

[tex]\[ 30 - 10 = 5s \][/tex]

[tex]\[ 20 = 5s \][/tex]

4. Divide both sides by 5 to solve for [tex]\( s \)[/tex]:

[tex]\[ \frac{20}{5} = s \][/tex]

[tex]\[ s = 4 \][/tex]

Thus, the correct value of [tex]\( s \)[/tex] is [tex]\( 4 \)[/tex].

Among the given options, the correct answer is:
[tex]\[ \boxed{4} \][/tex]