Plot the [tex]\( x \)[/tex]-intercept of the function [tex]\( f(x) = (x + 4)^2 \)[/tex].

[tex]\[
\begin{tabular}{|l|l|}
\hline
x & y \\
\hline
& \\
& \\
& \\
\hline
\end{tabular}
\][/tex]

Click or tap the graph to plot a point.



Answer :

To find the [tex]\( x \)[/tex]-intercept of the function [tex]\( f(x) = (x + 4)^2 \)[/tex], we follow these steps:

1. Understand the definition of the [tex]\( x \)[/tex]-intercept: The [tex]\( x \)[/tex]-intercept is the point where the graph of the function crosses the [tex]\( x \)[/tex]-axis. This means the [tex]\( y \)[/tex]-value at the [tex]\( x \)[/tex]-intercept is 0.

2. Set the function equal to zero: To find the [tex]\( x \)[/tex]-intercept, we need to solve the equation where the function [tex]\( f(x) \)[/tex] is equal to zero:
[tex]\[ (x + 4)^2 = 0 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
[tex]\[ (x + 4)^2 = 0 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ x + 4 = 0 \][/tex]
Solving for [tex]\( x \)[/tex], we find:
[tex]\[ x = -4 \][/tex]

4. Substitute [tex]\( x \)[/tex] back into the function to verify: To ensure our solution, we substitute [tex]\( -4 \)[/tex] back into the function:
[tex]\[ f(-4) = (-4 + 4)^2 = 0 \][/tex]
Indeed, the [tex]\( y \)[/tex]-value at [tex]\( x = -4 \)[/tex] is 0.

5. Record the intercept: Therefore, the [tex]\( x \)[/tex]-intercept of the function [tex]\( f(x) = (x + 4)^2 \)[/tex] is [tex]\( (-4, 0) \)[/tex].

Now, let's plot this intercept on the graph:
[tex]\[ \begin{tabular}{|l|l|} \hline $x$ & $y$ \\ \hline -4 & 0 \\ \hline & \\ \hline & \\ \hline & \\ \hline \end{tabular} \][/tex]

Click or tap on the graph at the point [tex]\((-4, 0)\)[/tex] to plot the [tex]\( x \)[/tex]-intercept.