Question 1 (Multiple Choice Worth 5 points)

Assuming the pattern continues, what is [tex]$S_{12}$[/tex] for the series
[tex]-5 - 14 - 23 - 32 - \ldots ?[/tex]

A. [tex]-104[/tex]
B. [tex]-624[/tex]
C. [tex]-654[/tex]
D. [tex]-663[/tex]



Answer :

To find the sum of the first 12 terms ([tex]\( S_{12} \)[/tex]) of the given arithmetic series [tex]\(-5, -14, -23, -32, \ldots\)[/tex], we need to use the formula for the sum of the first [tex]\( n \)[/tex] terms of an arithmetic series:

[tex]\[ S_n = \frac{n}{2} \left( 2a + (n-1)d \right) \][/tex]

Where:
- [tex]\( S_n \)[/tex] is the sum of the first [tex]\( n \)[/tex] terms.
- [tex]\( n \)[/tex] is the number of terms.
- [tex]\( a \)[/tex] is the first term of the series.
- [tex]\( d \)[/tex] is the common difference between consecutive terms.

Let’s proceed step-by-step.

1. Identify the first term ([tex]\( a \)[/tex]):

The first term of the series is [tex]\( a = -5 \)[/tex].

2. Find the common difference ([tex]\( d \)[/tex]):

To find the common difference, subtract the first term from the second term:
[tex]\[ d = -14 - (-5) = -14 + 5 = -9 \][/tex]

3. Determine the number of terms ([tex]\( n \)[/tex]) to be summed:

We need to find the sum of the first 12 terms, so [tex]\( n = 12 \)[/tex].

4. Substitute [tex]\( a \)[/tex], [tex]\( d \)[/tex], and [tex]\( n \)[/tex] into the sum formula:

[tex]\[ S_{12} = \frac{12}{2} \left( 2(-5) + (12-1)(-9) \right) \][/tex]

5. Simplify inside the parentheses first:

[tex]\[ S_{12} = 6 \left( -10 + 11(-9) \right) \][/tex]

6. Calculate the expression inside the parentheses:

[tex]\[ -10 + 11(-9) = -10 - 99 = -109 \][/tex]

7. Now multiply by 6 to get the final sum:

[tex]\[ S_{12} = 6 \times (-109) = -654 \][/tex]

The sum of the first 12 terms of the series is [tex]\( S_{12} = -654 \)[/tex], which matches one of the given choices.

So, the correct answer is:
[tex]\[ \boxed{-654} \][/tex]