The original text is nonsensical, so I will rewrite it to make sense.

Graph the function:
[tex]\[ y = 2 \times 2 - x - 1 \][/tex]



Answer :

Certainly! Let's proceed step-by-step to solve the given function [tex]\( y = 2 \times 2 - x - 1 \)[/tex].

1. First, evaluate the expression inside the function:
[tex]\[ y = 2 \times 2 - x - 1 \][/tex]

2. Start by calculating [tex]\( 2 \times 2 \)[/tex]:
[tex]\[ 2 \times 2 = 4 \][/tex]

3. Now substitute this result back into the equation:
[tex]\[ y = 4 - x - 1 \][/tex]

4. Next, simplify the expression by performing the subtraction [tex]\( 4 - 1 \)[/tex]:
[tex]\[ 4 - 1 = 3 \][/tex]

5. Now replace the simplified portion back into the equation:
[tex]\[ y = 3 - x \][/tex]

So, the simplified form of the function is:
[tex]\[ y = 3 - x \][/tex]

To find the values of [tex]\( y \)[/tex] for specific values of [tex]\( x \)[/tex], you can simply substitute those values of [tex]\( x \)[/tex] into the equation [tex]\( y = 3 - x \)[/tex].

For instance:
- If [tex]\( x = 0 \)[/tex], then [tex]\( y = 3 - 0 = 3 \)[/tex].
- If [tex]\( x = 1 \)[/tex], then [tex]\( y = 3 - 1 = 2 \)[/tex].
- If [tex]\( x = 2 \)[/tex], then [tex]\( y = 3 - 2 = 1 \)[/tex].

Thus, the function [tex]\( y = 3 - x \)[/tex] gives us a straight line when graphed and the values of [tex]\( y \)[/tex] for different [tex]\( x \)[/tex] can be determined as shown above.