Given [tex]\cos \theta = \frac{4}{5}[/tex] and [tex]0^{\circ} \ \textless \ \theta \ \textless \ 90^{\circ}[/tex], find [tex]\sin 2\theta[/tex].

A. [tex]-\frac{24}{25}[/tex]
B. [tex]\frac{24}{25}[/tex]
C. [tex]-\frac{24}{7}[/tex]
D. [tex]-\frac{7}{25}[/tex]

Please select the best answer from the choices provided:

A
B
C
D



Answer :

To solve the problem of finding [tex]\(\sin 2\theta\)[/tex] given [tex]\(\cos \theta = \frac{4}{5}\)[/tex] and [tex]\(0^\circ < \theta < 90^\circ\)[/tex], we will follow these steps:

1. Calculate [tex]\(\sin \theta\)[/tex]:
Given the Pythagorean identity:
[tex]\[ \cos^2 \theta + \sin^2 \theta = 1 \][/tex]
We can solve for [tex]\(\sin \theta\)[/tex]:
[tex]\[ \sin^2 \theta = 1 - \cos^2 \theta \][/tex]
Substituting [tex]\(\cos \theta = \frac{4}{5}\)[/tex]:
[tex]\[ \cos^2 \theta = \left(\frac{4}{5}\right)^2 = \frac{16}{25} \][/tex]
Thus,
[tex]\[ \sin^2 \theta = 1 - \frac{16}{25} = \frac{9}{25} \][/tex]
Taking the positive square root (since [tex]\(0^\circ < \theta < 90^\circ\)[/tex] and sine is positive in this interval):
[tex]\[ \sin \theta = \sqrt{\frac{9}{25}} = \frac{3}{5} \][/tex]

2. Calculate [tex]\(\sin 2\theta\)[/tex]:
Using the double angle formula for sine:
[tex]\[ \sin 2\theta = 2 \sin \theta \cos \theta \][/tex]
Substituting the values [tex]\(\sin \theta = \frac{3}{5}\)[/tex] and [tex]\(\cos \theta = \frac{4}{5}\)[/tex]:
[tex]\[ \sin 2\theta = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = 2 \cdot \frac{12}{25} = \frac{24}{25} \][/tex]

Therefore, [tex]\(\sin 2\theta = \frac{24}{25}\)[/tex].

The correct answer is [tex]\( \text{b.} \frac{24}{25} \)[/tex].

So, the best answer from the choices provided is:
B