Answer :

Solution:

To graph the equation x + 4y = 8, follow these steps:

[tex]\noindent\rule{12cm}{0.4pt}[/tex]

1. Rewrite the Equation in Slope-Intercept form:

   [tex]\text{The slope-intercept form of a line is $y=mx+b,$ where $m$ is the slope and $b$}\\\text{is the $y$-intercept.}[/tex]

   [tex]x+4y=8\\4y=-x+8\\\\y=-\dfrac{1}{4}x+2[/tex]

  [tex]\text{Now, the equation is in the form $y=mx+b$, where $m=-\dfrac{1}{4}$ and $b=2.$}[/tex]

[tex]\noindent\rule{12cm}{0.4pt}[/tex]

2.  Identify the y-intercept.

    [tex]\text{The $y$-intercept is the value of $y$ when $x=0.$}\\\\\text{From the equation $y=-\dfrac{1}{4}x+2,$ when $x=0:$}\\\text{$y=2$}\\\\\text{So, the $y$-intercept is (0,2).}[/tex]

[tex]\noindent\rule{12cm}{0.4pt}[/tex]

3.  Identify the x-intercept.

    [tex]\text{The $x$-intercept is the value of $x$ when $y=0.$}\\\\\text{From the original equation $x+4y=8,$ when $y=0:$}\\x+4(0)=8\\x=8\\\\\text{So, the $x$-intercept is (8,0).}[/tex]

[tex]\noindent\rule{12cm}{0.4pt}[/tex]

4.  Plot the intercepts:

  • Plot the y-intercept (0,2).
  • Plot the x-intercept (8,0).

[tex]\noindent\rule{12cm}{0.4pt}[/tex]

5.  Join the plotted points.

  • Connect the two points (0,2) and (8,0) with a straight line.

View image dashataran