Answer :

Let's work on the given equation step-by-step to understand how we arrive at the solution.

The equation we have is:
[tex]\[ y = 2^x + 5 \][/tex]

We are interested in evaluating this equation for a specific value of [tex]\( x \)[/tex]. Let's say:
[tex]\[ x = 3 \][/tex]

Now, let's substitute [tex]\( x = 3 \)[/tex] into the given equation:

1. First, calculate [tex]\( 2^3 \)[/tex]:
[tex]\[ 2^3 = 2 \times 2 \times 2 = 8 \][/tex]

2. Then, add 5 to this result:
[tex]\[ y = 8 + 5 \][/tex]

3. Simplify the addition:
[tex]\[ y = 13 \][/tex]

Therefore, when [tex]\( x = 3 \)[/tex], the value of [tex]\( y \)[/tex] is:
[tex]\[ y = 13 \][/tex]

So, the ordered pair [tex]\((x, y)\)[/tex] for [tex]\( x = 3 \)[/tex] is:
[tex]\[ (3, 13) \][/tex]

This means that for [tex]\( x = 3 \)[/tex], [tex]\( y \)[/tex] evaluates to 13, thus giving us the result:
[tex]\[ (3, 13) \][/tex]