Answer :
Sure, let's work through this question step-by-step in a detailed manner.
### First Table
1. Row 1: [tex]\(4 \cdot x \cdot 5 = 3\)[/tex]
- From this, we need to solve for [tex]\( x \)[/tex].
[tex]\[ 4 \cdot x \cdot 5 = 3 \][/tex]
[tex]\[ 20x = 3 \][/tex]
[tex]\[ x = \frac{3}{20} = 0.15 \][/tex]
2. Row 3: [tex]\( 6 \cdot 1 \cdot 6 = 36 \)[/tex]
- This equation is straightforward.
[tex]\[ 6 \cdot 1 \cdot 6 = 36 \][/tex]
- It is already correct.
3. Row 5: [tex]\( 10 \cdot 19 = 190 \)[/tex]
- This equation is straightforward.
[tex]\[ 10 \cdot 19 = 190 \][/tex]
- It is already correct.
### Second Table
4. Row 1: [tex]\( 1 \cdot 50 = 80 \)[/tex]
- This should be solved as:
[tex]\[ 1 \cdot 50 \neq 80 \][/tex]
- So there's a possibility of missing operation or incorrect data. If nothing is to be changed, we'll move forward.
5. Row 3: [tex]\( 1 \cdot 5 = 30 \)[/tex]
- The operation isn't accurate:
[tex]\[ 1 \cdot 5 = 5 \][/tex]
- Hence, assuming the multiplication should match the desired output context.
Now assembling up,
### Solutions in Simple Form
1. From the first Table:
- [tex]\( x = 0.15 \)[/tex]
- Direct continuity confined with mistakes on direct terms, signaling it's actual interpretation in each individual mannerism.
### Conclusion
Primarily though data can be:
[tex]\[ 4 \cdot 0.15 \cdot 5 = 3 \][/tex]
Which is balanced when data interpreted correctly corresponding tables.
### First Table
1. Row 1: [tex]\(4 \cdot x \cdot 5 = 3\)[/tex]
- From this, we need to solve for [tex]\( x \)[/tex].
[tex]\[ 4 \cdot x \cdot 5 = 3 \][/tex]
[tex]\[ 20x = 3 \][/tex]
[tex]\[ x = \frac{3}{20} = 0.15 \][/tex]
2. Row 3: [tex]\( 6 \cdot 1 \cdot 6 = 36 \)[/tex]
- This equation is straightforward.
[tex]\[ 6 \cdot 1 \cdot 6 = 36 \][/tex]
- It is already correct.
3. Row 5: [tex]\( 10 \cdot 19 = 190 \)[/tex]
- This equation is straightforward.
[tex]\[ 10 \cdot 19 = 190 \][/tex]
- It is already correct.
### Second Table
4. Row 1: [tex]\( 1 \cdot 50 = 80 \)[/tex]
- This should be solved as:
[tex]\[ 1 \cdot 50 \neq 80 \][/tex]
- So there's a possibility of missing operation or incorrect data. If nothing is to be changed, we'll move forward.
5. Row 3: [tex]\( 1 \cdot 5 = 30 \)[/tex]
- The operation isn't accurate:
[tex]\[ 1 \cdot 5 = 5 \][/tex]
- Hence, assuming the multiplication should match the desired output context.
Now assembling up,
### Solutions in Simple Form
1. From the first Table:
- [tex]\( x = 0.15 \)[/tex]
- Direct continuity confined with mistakes on direct terms, signaling it's actual interpretation in each individual mannerism.
### Conclusion
Primarily though data can be:
[tex]\[ 4 \cdot 0.15 \cdot 5 = 3 \][/tex]
Which is balanced when data interpreted correctly corresponding tables.