Answer :
To determine which function is equivalent to the inverse of [tex]\( y = \sec(x) \)[/tex], we need to find an expression for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] by finding the inverse function of [tex]\(\sec(x)\)[/tex].
1. Recall the definition of the secant function:
[tex]\[ y = \sec(x) = \frac{1}{\cos(x)} \][/tex]
2. To find the inverse, we need to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].
[tex]\[ \sec(x) = y \][/tex]
3. From the definition of the secant function, we know:
[tex]\[ \sec(x) = \frac{1}{\cos(x)} \][/tex]
Therefore, we can write:
[tex]\[ y = \frac{1}{\cos(x)} \][/tex]
4. To isolate [tex]\(\cos(x)\)[/tex], take the reciprocal of both sides:
[tex]\[ \cos(x) = \frac{1}{y} \][/tex]
5. Taking the arccosine (inverse cosine) of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \cos^{-1}\left(\frac{1}{y}\right) \][/tex]
Thus, the function that is equivalent to the inverse of [tex]\( y = \sec(x) \)[/tex] is:
[tex]\[ y = \cos^{-1}\left(\frac{1}{x}\right) \][/tex]
To sum up, the correct option is:
[tex]\[ \boxed{y = \cos^{-1}\left(\frac{1}{x}\right)} \][/tex]
1. Recall the definition of the secant function:
[tex]\[ y = \sec(x) = \frac{1}{\cos(x)} \][/tex]
2. To find the inverse, we need to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].
[tex]\[ \sec(x) = y \][/tex]
3. From the definition of the secant function, we know:
[tex]\[ \sec(x) = \frac{1}{\cos(x)} \][/tex]
Therefore, we can write:
[tex]\[ y = \frac{1}{\cos(x)} \][/tex]
4. To isolate [tex]\(\cos(x)\)[/tex], take the reciprocal of both sides:
[tex]\[ \cos(x) = \frac{1}{y} \][/tex]
5. Taking the arccosine (inverse cosine) of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \cos^{-1}\left(\frac{1}{y}\right) \][/tex]
Thus, the function that is equivalent to the inverse of [tex]\( y = \sec(x) \)[/tex] is:
[tex]\[ y = \cos^{-1}\left(\frac{1}{x}\right) \][/tex]
To sum up, the correct option is:
[tex]\[ \boxed{y = \cos^{-1}\left(\frac{1}{x}\right)} \][/tex]