Answer :

Answer:

[tex]\(\frac{8}{3}\).[/tex]

Step-by-step explanation:

To convert [tex]\(2.\overline{6}\) (2.66666...)[/tex] to a fraction, follow these steps:

1. Let [tex]\( x = 2.\overline{6} \).[/tex]

2. Multiply both sides by [tex]10: \( 10x = 26.\overline{6} \).[/tex]

3. Subtract the original equation from this new equation:

  [tex]\[ 10x - x = 26.\overline{6} - 2.\overline{6} \][/tex]

 [tex]\[ 9x = 24 \][/tex]

4. Solve for [tex]\( x \):[/tex]

 [tex]\[ x = \frac{24}{9} \][/tex]

5. Simplify the fraction by dividing the numerator and the denominator by their greatest common divisor (3):

 [tex]\[ x = \frac{24 \div 3}{9 \div 3} = \frac{8}{3} \][/tex]

Therefore, [tex]\(2.\overline{6}\)[/tex] as a simplified fraction is [tex]\(\frac{8}{3}\).[/tex]