Solve [tex]-5 \ \textless \ 4x + 3 \leq 7[/tex].

A. [tex]x \ \textless \ -2[/tex] or [tex]x \leq 4[/tex]
B. [tex]x \ \textgreater \ -2[/tex] or [tex]x \leq 1[/tex]
C. [tex]x \ \textgreater \ -2[/tex] and [tex]x \leq 1[/tex]
D. [tex]x \ \textgreater \ 2[/tex] and [tex]x \leq 4[/tex]



Answer :

To solve the compound inequality [tex]\(-5 < 4x + 3 \leq 7\)[/tex], we will break it down into two parts and solve each part separately, then combine the results.

### Step 1: Solve [tex]\(-5 < 4x + 3\)[/tex]
1. Start with the inequality: [tex]\(-5 < 4x + 3\)[/tex]
2. Subtract 3 from both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ -5 - 3 < 4x \][/tex]
3. Simplify the left side:
[tex]\[ -8 < 4x \][/tex]
4. Divide both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]\[ -8 / 4 < x \Rightarrow -2 < x \][/tex]

### Step 2: Solve [tex]\(4x + 3 \leq 7\)[/tex]
1. Start with the inequality: [tex]\(4x + 3 \leq 7\)[/tex]
2. Subtract 3 from both sides to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ 4x + 3 - 3 \leq 7 - 3 \][/tex]
3. Simplify the right side:
[tex]\[ 4x \leq 4 \][/tex]
4. Divide both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]\[ 4 / 4 \leq x \Rightarrow x \leq 1 \][/tex]

### Step 3: Combine the results
Putting the results from the two parts together:
[tex]\[ -2 < x \quad \text{and} \quad x \leq 1 \][/tex]

Therefore, the solution to the inequality [tex]\(-5 < 4x + 3 \leq 7\)[/tex] is:
[tex]\[ -2 < x \leq 1 \][/tex]

Among the given options, the one that correctly represents this solution is:
[tex]\[ \text{C. } x > -2 \text{ and } x \leq 1 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{C} \][/tex]