Solve the compound inequality for [tex]$x$[/tex] and identify the graph of its solution.

[tex]\[ x + 5 \leq 1 \text{ or } x - 7 \geq -3 \][/tex]

A. Solution [tex]$x \leq -4$[/tex] or [tex]$x \geq 4$[/tex]
B. Solution [tex][tex]$x \ \textless \ -4$[/tex][/tex] or [tex]$x \geq 4$[/tex]
C. Solution [tex]$x \geq -4$[/tex] and [tex][tex]$x \leq 4$[/tex][/tex]
D. Solution [tex]$x \leq -4$[/tex] or [tex]$x \geq 4$[/tex]



Answer :

Sure, let's solve the compound inequality step by step:

### Step 1: Solve the inequality [tex]\( x + 5 \leq 1 \)[/tex]

Subtract 5 from both sides:
[tex]\[ x + 5 - 5 \leq 1 - 5 \][/tex]
[tex]\[ x \leq -4 \][/tex]

### Step 2: Solve the inequality [tex]\( x - 7 \geq -3 \)[/tex]

Add 7 to both sides:
[tex]\[ x - 7 + 7 \geq -3 + 7 \][/tex]
[tex]\[ x \geq 4 \][/tex]

### Step 3: Combine the solutions

The compound inequality is an "or" statement:
[tex]\[ x + 5 \leq 1 \text{ or } x - 7 \geq -3 \][/tex]

Combining the solutions, we get:
[tex]\[ x \leq -4 \text{ or } x \geq 4 \][/tex]

### Step 4: Identify the graph of the solution

- For [tex]\( x \leq -4 \)[/tex], it includes all values to the left of -4 including -4.
- For [tex]\( x \geq 4 \)[/tex], it includes all values to the right of 4 including 4.

Thus, the correct answer is:

A. [tex]\(x \leq -4 \)[/tex] or [tex]\( x \geq 4 \)[/tex]

### Graph of the Solution

On a number line, this would be represented as two segments:
- A shaded circle at -4 extending indefinitely to the left.
- A shaded circle at 4 extending indefinitely to the right.