Solve the formula [tex]$A = lw$[/tex] for [tex]$l$[/tex].

A. [tex][tex]$l = wA$[/tex][/tex]

B. [tex]$l = \frac{A}{w}$[/tex]

C. [tex]$l = A - w$[/tex]

D. [tex]$l = \frac{W}{A}$[/tex]



Answer :

To solve the equation [tex]\(A = l \cdot w\)[/tex] for [tex]\(l\)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ A = l \cdot w \][/tex]

2. To isolate [tex]\(l\)[/tex], divide both sides of the equation by [tex]\(w\)[/tex]. This step involves dividing both the left-hand side and the right-hand side by [tex]\(w\)[/tex]:
[tex]\[ \frac{A}{w} = l \][/tex]

3. Rearranging the equation gives:
[tex]\[ l = \frac{A}{w} \][/tex]

Thus, the solution for [tex]\(l\)[/tex] in terms of [tex]\(A\)[/tex] and [tex]\(w\)[/tex] is:
[tex]\[ l = \frac{A}{w} \][/tex]

Therefore, the correct choice is:
B. [tex]\(l = \frac{A}{w}\)[/tex]