Triangle [tex]$XYZ$[/tex] has vertices [tex]$X(1,3)$[/tex], [tex]$Y(0,0)$[/tex], and [tex]$Z(-1,2)$[/tex]. The image of triangle [tex]$XYZ$[/tex] after a rotation has vertices [tex]$X'(-3,1)$[/tex], [tex]$Y'(0,0)$[/tex], and [tex]$Z'(-2,-1)$[/tex]. Which rule describes the transformation?

A. [tex]$R_{0,90^{\circ}}$[/tex]
B. [tex]$R_{0,180^{\circ}}$[/tex]
C. [tex]$R_{0,270^{\circ}}$[/tex]
D. [tex]$R_{0,360^{\circ}}$[/tex]



Answer :

To determine which rotation was applied to the triangle [tex]\( XYZ \)[/tex] to obtain [tex]\( X'Y'Z' \)[/tex], we need to analyze the given vertices before and after the transformation.

1. Vertices of the original triangle [tex]\( XYZ \)[/tex]:
[tex]\[ X(1, 3), \quad Y(0, 0), \quad Z(-1, 2) \][/tex]

2. Vertices of the transformed triangle [tex]\( X'Y'Z' \)[/tex]:
[tex]\[ X'(-3, 1), \quad Y'(0, 0), \quad Z'(-2, -1) \][/tex]

Next, let's evaluate the potential rotations individually and see which one matches the given transformed vertices. We'll start by knowing typical rotation rules around the origin (counterclockwise):

### 1. Rotation by [tex]\( 90^\circ \)[/tex]
The transformation rule for a rotation of [tex]\( 90^\circ \)[/tex] counterclockwise around the origin is:
[tex]\[ (x, y) \rightarrow (-y, x) \][/tex]

- For [tex]\( X(1, 3) \)[/tex]:
[tex]\[ (1, 3) \rightarrow (-3, 1) \][/tex]
This matches [tex]\( X'(-3, 1) \)[/tex].
- For [tex]\( Y(0, 0) \)[/tex]:
[tex]\[ (0, 0) \rightarrow (0, 0) \][/tex]
This matches [tex]\( Y'(0, 0) \)[/tex].
- For [tex]\( Z(-1, 2) \)[/tex]:
[tex]\[ (-1, 2) \rightarrow (-2, -1) \][/tex]
This matches [tex]\( Z'(-2, -1) \)[/tex].

Since all the vertices match, the rule that describes the transformation is:
[tex]\[ R_{0, 270^\circ} \][/tex]

Thus, the answer is:
[tex]\[ \boxed{R_{0,270^{\circ}}} \][/tex]