Answer :
Let's find the matrix [tex]\( A \)[/tex].
Given:
[tex]\[ A = \begin{pmatrix} 3 & 9 & 27 & 81 \\ 1 & 1 & 1 & 1 \\ -2 & 4 & -8 & 16 \\ 2 & 4 & 8 & 16 \end{pmatrix} \][/tex]
Step-by-step breakdown of the matrix [tex]\( A \)[/tex]:
1. First Row:
[tex]\[ \begin{pmatrix} 3 & 9 & 27 & 81 \end{pmatrix} \][/tex]
2. Second Row:
[tex]\[ \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \][/tex]
3. Third Row:
[tex]\[ \begin{pmatrix} -2 & 4 & -8 & 16 \end{pmatrix} \][/tex]
4. Fourth Row:
[tex]\[ \begin{pmatrix} 2 & 4 & 8 & 16 \end{pmatrix} \][/tex]
Combining these rows together gives us the matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 9 & 27 & 81 \\ 1 & 1 & 1 & 1 \\ -2 & 4 & -8 & 16 \\ 2 & 4 & 8 & 16 \end{pmatrix} \][/tex]
So, the matrix [tex]\( A \)[/tex] is:
[tex]\[ A = \begin{pmatrix} 3 & 9 & 27 & 81 \\ 1 & 1 & 1 & 1 \\ -2 & 4 & -8 & 16 \\ 2 & 4 & 8 & 16 \end{pmatrix} \][/tex]
This is the final form of matrix [tex]\( A \)[/tex].
Given:
[tex]\[ A = \begin{pmatrix} 3 & 9 & 27 & 81 \\ 1 & 1 & 1 & 1 \\ -2 & 4 & -8 & 16 \\ 2 & 4 & 8 & 16 \end{pmatrix} \][/tex]
Step-by-step breakdown of the matrix [tex]\( A \)[/tex]:
1. First Row:
[tex]\[ \begin{pmatrix} 3 & 9 & 27 & 81 \end{pmatrix} \][/tex]
2. Second Row:
[tex]\[ \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \][/tex]
3. Third Row:
[tex]\[ \begin{pmatrix} -2 & 4 & -8 & 16 \end{pmatrix} \][/tex]
4. Fourth Row:
[tex]\[ \begin{pmatrix} 2 & 4 & 8 & 16 \end{pmatrix} \][/tex]
Combining these rows together gives us the matrix [tex]\( A \)[/tex]:
[tex]\[ A = \begin{pmatrix} 3 & 9 & 27 & 81 \\ 1 & 1 & 1 & 1 \\ -2 & 4 & -8 & 16 \\ 2 & 4 & 8 & 16 \end{pmatrix} \][/tex]
So, the matrix [tex]\( A \)[/tex] is:
[tex]\[ A = \begin{pmatrix} 3 & 9 & 27 & 81 \\ 1 & 1 & 1 & 1 \\ -2 & 4 & -8 & 16 \\ 2 & 4 & 8 & 16 \end{pmatrix} \][/tex]
This is the final form of matrix [tex]\( A \)[/tex].