Solve [tex]$5x - c = k$[/tex] for [tex]$x$[/tex].

A. [tex]$x = 5(k + c)$[/tex]
B. [tex]$x = \frac{k - c}{5}$[/tex]
C. [tex][tex]$x = 5(k - c)$[/tex][/tex]
D. [tex]$x = \frac{k + c}{5}$[/tex]



Answer :

To solve the equation [tex]\( 5x - c = k \)[/tex] for [tex]\( x \)[/tex], follow these steps:

1. Isolate the term with [tex]\( x \)[/tex]:
Start by adding [tex]\( c \)[/tex] to both sides of the equation to isolate the term containing [tex]\( x \)[/tex].
[tex]\[ 5x - c + c = k + c \][/tex]
Simplifying this, you get:
[tex]\[ 5x = k + c \][/tex]

2. Solve for [tex]\( x \)[/tex]:
Now, to solve for [tex]\( x \)[/tex], divide both sides of the equation by 5 to isolate [tex]\( x \)[/tex].
[tex]\[ x = \frac{k + c}{5} \][/tex]

Therefore, the solution is:
[tex]\[ x = \frac{k + c}{5} \][/tex]

Hence, the correct answer is [tex]\( \boxed{D} \)[/tex].