What is the value of [tex]\( m \)[/tex] in the equation [tex]\(\frac{1}{2} m - \frac{3}{4} n = 16\)[/tex], when [tex]\( n = 20 \)[/tex]?

A. 32
B. 44
C. 48
D. 64



Answer :

Let's solve the equation step-by-step to find the value of [tex]\( m \)[/tex] when [tex]\( n \)[/tex] is given as 20.

Given equation:
[tex]\[ \frac{1}{2}m - \frac{3}{4}n = 16 \][/tex]

Let's follow the steps to solve for [tex]\( m \)[/tex].

### Step 1: Simplify the Equation
First, we'll eliminate the fractions by multiplying the entire equation by 4:

[tex]\[ 4 \left( \frac{1}{2}m - \frac{3}{4}n \right) = 4 \cdot 16 \][/tex]

This gives us:

[tex]\[ 2m - 3n = 64 \][/tex]

### Step 2: Substitute the Value of [tex]\( n \)[/tex]
We are given [tex]\( n = 20 \)[/tex]. Substitute this value into the equation:

[tex]\[ 2m - 3(20) = 64 \][/tex]

### Step 3: Simplify the Equation Further
Calculate [tex]\( 3 \times 20 \)[/tex]:

[tex]\[ 2m - 60 = 64 \][/tex]

### Step 4: Isolate the term containing [tex]\( m \)[/tex]
Add 60 to both sides to isolate the [tex]\( 2m \)[/tex] term:

[tex]\[ 2m = 64 + 60 \][/tex]

This simplifies to:

[tex]\[ 2m = 124 \][/tex]

### Step 5: Solve for [tex]\( m \)[/tex]
Finally, divide both sides by 2 to solve for [tex]\( m \)[/tex]:

[tex]\[ m = \frac{124}{2} \][/tex]

So, the value of [tex]\( m \)[/tex] is:

[tex]\[ m = 62 \][/tex]

Therefore, the value of [tex]\( m \)[/tex] when [tex]\( n = 20 \)[/tex] is [tex]\( \boxed{62} \)[/tex].