12. If [tex]\vec{i} + 2 \vec{j} + n \vec{k}[/tex] is perpendicular to [tex]4 \vec{i} + 2 \vec{j} + 2 \vec{k}[/tex], then [tex]n[/tex] equals:

1. 4
2. 2
3. -4
4. -2



Answer :

To determine the value of [tex]\( n \)[/tex] for which the vector [tex]\(\vec{i} + 2\vec{j} + n\vec{k}\)[/tex] is perpendicular to [tex]\( 4\vec{i} + 2\vec{j} + 2\vec{k} \)[/tex], we need to follow these steps:

1. Recall the condition for two vectors to be perpendicular: their dot product must be zero.
2. Compute the dot product of the given vectors.
3. Set the dot product equal to zero and solve for [tex]\( n \)[/tex].

Let's denote the vectors as:

[tex]\[ \vec{a} = \vec{i} + 2\vec{j} + n\vec{k} \][/tex]
[tex]\[ \vec{b} = 4\vec{i} + 2\vec{j} + 2\vec{k} \][/tex]

The dot product of [tex]\(\vec{a}\)[/tex] and [tex]\(\vec{b}\)[/tex] is given by:

[tex]\[ \vec{a} \cdot \vec{b} = (1 \times 4) + (2 \times 2) + (n \times 2) \][/tex]

Now, let's compute it step-by-step:

[tex]\[ 1 \times 4 = 4 \][/tex]
[tex]\[ 2 \times 2 = 4 \][/tex]
[tex]\[ n \times 2 = 2n \][/tex]

Thus, the dot product is:

[tex]\[ \vec{a} \cdot \vec{b} = 4 + 4 + 2n = 8 + 2n \][/tex]

Since the vectors are perpendicular, their dot product must be zero:

[tex]\[ 8 + 2n = 0 \][/tex]

Solving for [tex]\( n \)[/tex]:

[tex]\[ 2n = -8 \][/tex]
[tex]\[ n = \frac{-8}{2} \][/tex]
[tex]\[ n = -4 \][/tex]

Therefore, the value of [tex]\( n \)[/tex] is:

[tex]\[ n = -4 \][/tex]

Thus, the correct answer is:

3) -4