If [tex]$u(x) = x^5 - x^4 + x^2$[/tex] and [tex]$v(x) = -x^2$[/tex], which expression is equivalent to [tex]\left(\frac{u}{v}\right)(x)$[/tex]?

A. [tex]x^3 - x^2[/tex]

B. [tex]-x^3 + x^2[/tex]

C. [tex]-x^3 + x^2 - 1[/tex]

D. [tex]x^3 - x^2 + 1[/tex]



Answer :

To find which expression is equivalent to [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex] given that [tex]\(u(x) = x^5 - x^4 + x^2\)[/tex] and [tex]\(v(x) = -x^2\)[/tex], let's perform the following steps:

1. Identify the expressions for [tex]\(u(x)\)[/tex] and [tex]\(v(x)\)[/tex]:
- [tex]\(u(x) = x^5 - x^4 + x^2\)[/tex]
- [tex]\(v(x) = -x^2\)[/tex]

2. Form the quotient [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex]:
[tex]\[ \left(\frac{u}{v}\right)(x) = \frac{x^5 - x^4 + x^2}{-x^2} \][/tex]

3. Divide each term in the numerator by the term in the denominator [tex]\(-x^2\)[/tex]:
[tex]\[ \left(\frac{u}{v}\right)(x) = \left(\frac{x^5}{-x^2}\right) + \left(\frac{-x^4}{-x^2}\right) + \left(\frac{x^2}{-x^2}\right) \][/tex]

4. Simplify each term individually:
[tex]\[ \frac{x^5}{-x^2} = -x^{5-2} = -x^3 \][/tex]
[tex]\[ \frac{-x^4}{-x^2} = x^{4-2} = x^2 \][/tex]
[tex]\[ \frac{x^2}{-x^2} = -1 \][/tex]

5. Combine these simplified terms:
[tex]\[ -x^3 + x^2 - 1 \][/tex]

So, the expression equivalent to [tex]\(\left(\frac{u}{v}\right)(x)\)[/tex] is [tex]\( -x^3 + x^2 - 1 \)[/tex].

Therefore, the correct option is:
[tex]\[ -x^3 + x^2 - 1 \][/tex]