Which choice is equivalent to the product below when [tex]x\ \textgreater \ 0[/tex]?

[tex]\sqrt{\frac{1}{x^2}} \cdot \sqrt{\frac{x^2}{81}}[/tex]

A. [tex]\frac{x}{81}[/tex]
B. [tex]\frac{1}{9}[/tex]
C. [tex]\frac{1}{81}[/tex]
D. [tex]\frac{x}{9}[/tex]



Answer :

To solve the given expression [tex]\(\sqrt{\frac{1}{x^2}} \cdot \sqrt{\frac{x^2}{81}}\)[/tex] and determine which choice is equivalent to it when [tex]\(x > 0\)[/tex], follow these steps:

1. Simplify Each Square Root Separately:

[tex]\[ \sqrt{\frac{1}{x^2}} = \frac{1}{x} \][/tex]
This is because the square root of [tex]\(\frac{1}{x^2}\)[/tex] is [tex]\(\frac{1}{x}\)[/tex].

[tex]\[ \sqrt{\frac{x^2}{81}} = \frac{x}{9} \][/tex]
This is because the square root of [tex]\(\frac{x^2}{81}\)[/tex] is [tex]\(\frac{x}{9}\)[/tex].

2. Multiply the Simplified Expressions:

Now, we need to multiply the two simplified expressions together:

[tex]\[ \frac{1}{x} \cdot \frac{x}{9} \][/tex]

3. Simplify the Product:

When multiplying, the [tex]\(x\)[/tex] in the numerator of the second fraction cancels out with the [tex]\(x\)[/tex] in the denominator of the first fraction:

[tex]\[ \frac{1 \cdot x}{x \cdot 9} = \frac{x}{9x} = \frac{1}{9} \][/tex]

Therefore, the product [tex]\(\sqrt{\frac{1}{x^2}} \cdot \sqrt{\frac{x^2}{81}}\)[/tex] simplifies to [tex]\(\frac{1}{9}\)[/tex].

Hence, the correct choice is:
B. [tex]\(\frac{1}{9}\)[/tex]