Which choice is equivalent to the product below when [tex]$x\ \textgreater \ 0$[/tex]?

[tex] \sqrt{\frac{2}{x}} \cdot \sqrt{\frac{x^2}{8}} [/tex]

A. [tex] \frac{x}{4} [/tex]
B. [tex] \frac{\sqrt{x}}{2} [/tex]
C. [tex] \frac{x}{2} [/tex]
D. [tex] \sqrt{\frac{x}{2}} [/tex]



Answer :

Let's simplify the expression step-by-step to determine which of the given choices is equivalent to the product when [tex]\( x > 0 \)[/tex]:

Given:
[tex]\[ \sqrt{\frac{2}{x}} \cdot \sqrt{\frac{x^2}{8}} \][/tex]

First, we use the property of square roots that states [tex]\( \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \)[/tex]. Therefore, we can combine the square roots:

[tex]\[ \sqrt{\frac{2}{x}} \cdot \sqrt{\frac{x^2}{8}} = \sqrt{\left(\frac{2}{x}\right) \cdot \left(\frac{x^2}{8}\right)} \][/tex]

Next, we multiply the expressions inside the square root:

[tex]\[ \left(\frac{2}{x}\right) \cdot \left(\frac{x^2}{8}\right) = \frac{2 \cdot x^2}{x \cdot 8} = \frac{2x^2}{8x} = \frac{x}{4} \][/tex]

So, now we have:

[tex]\[ \sqrt{\frac{2}{x}} \cdot \sqrt{\frac{x^2}{8}} = \sqrt{\frac{x}{4}} \][/tex]

Now, we look at the given answer choices and see which one matches [tex]\( \sqrt{\frac{x}{4}} \)[/tex].

A. [tex]\( \frac{x}{4} \)[/tex]

B. [tex]\( \frac{\sqrt{x}}{2} \)[/tex]

C. [tex]\( \frac{x}{2} \)[/tex]

D. [tex]\( \sqrt{\frac{x}{2}} \)[/tex]

It is clear that none of the answer choices matches [tex]\( \sqrt{\frac{x}{4}} \)[/tex].

Therefore, the correct answer is:
[tex]\[ \text{None of the given choices are equivalent to the product} \][/tex]

So, the answer is:

None