\begin{tabular}{|l|l|}
\hline
Object A & [tex]$0.000001877 \, \text{pc}$[/tex] \\
\hline
Object B & [tex]$30.06 \, \text{AU}$[/tex] \\
\hline
Object C & [tex]$778.3 \, \text{million km}$[/tex] \\
\hline
\end{tabular}

Conversion factors:
[tex]\[1 \, \text{AU} = 1.5 \times 10^8 \, \text{km}\][/tex]
[tex]\[1 \, \text{light-year} = 9.5 \times 10^{12} \, \text{km}\][/tex]
[tex]\[1 \, \text{parsec} = 31 \, \text{trillion km}, \text{ or about } 3.262 \, \text{light-years}\][/tex]

Calculate the distances:
- Distance to Object A: [tex]$\square$[/tex]
- Distance to Object B: [tex]$\square$[/tex]
- Distance to Object C: [tex]$\square$[/tex]

Choices:
- [tex]$5.2 \, \text{AU}$[/tex]
- [tex]$57.91 \, \text{million km}$[/tex]
- [tex]$\xrightarrow{\longrightarrow}$[/tex] [tex]$\square$[/tex]



Answer :

To find the distances of each object in kilometers, we need to use the given conversion factors to convert each distance. Let’s start with each object:

### Object A: [tex]\(0.000001877 \text{ parsecs}\)[/tex]

We know that:
[tex]\[1 \text{ parsec} = 31 \times 10^{12} \text{ km}\][/tex]

So, we can convert the distance for Object A:
[tex]\[ 0.000001877 \text{ parsecs} \times 31 \times 10^{12} \text{ km/parsec} = 58187000 \text{ km} \][/tex]

### Object B: [tex]\(30.06 \text{ AU}\)[/tex]

We know that:
[tex]\[1 \text{ AU} = 1.5 \times 10^{8} \text{ km}\][/tex]

So, we can convert the distance for Object B:
[tex]\[ 30.06 \text{ AU} \times 1.5 \times 10^{8} \text{ km/AU} = 4509000000 \text{ km} \][/tex]

### Object C: [tex]\(778.3 \text{ million km}\)[/tex]

Object C's distance is already given in kilometers. We note that:
[tex]\[ 1 \text{ million km} = 10^{6} \text{ km} \][/tex]

So, the distance for Object C is:
[tex]\[ 778.3 \text{ million km} = 778.3 \times 10^{6} \text{ km} = 778300000 \text{ km} \][/tex]

### Summary

Therefore, the distances to each of the objects in kilometers are:
- Object A: [tex]\(58187000 \text{ km}\)[/tex]
- Object B: [tex]\(4509000000 \text{ km}\)[/tex]
- Object C: [tex]\(778300000 \text{ km}\)[/tex]

These values show the distances of the objects in the more universal unit of kilometers.