Answer :
To find the distances of each object in kilometers, we need to use the given conversion factors to convert each distance. Let’s start with each object:
### Object A: [tex]\(0.000001877 \text{ parsecs}\)[/tex]
We know that:
[tex]\[1 \text{ parsec} = 31 \times 10^{12} \text{ km}\][/tex]
So, we can convert the distance for Object A:
[tex]\[ 0.000001877 \text{ parsecs} \times 31 \times 10^{12} \text{ km/parsec} = 58187000 \text{ km} \][/tex]
### Object B: [tex]\(30.06 \text{ AU}\)[/tex]
We know that:
[tex]\[1 \text{ AU} = 1.5 \times 10^{8} \text{ km}\][/tex]
So, we can convert the distance for Object B:
[tex]\[ 30.06 \text{ AU} \times 1.5 \times 10^{8} \text{ km/AU} = 4509000000 \text{ km} \][/tex]
### Object C: [tex]\(778.3 \text{ million km}\)[/tex]
Object C's distance is already given in kilometers. We note that:
[tex]\[ 1 \text{ million km} = 10^{6} \text{ km} \][/tex]
So, the distance for Object C is:
[tex]\[ 778.3 \text{ million km} = 778.3 \times 10^{6} \text{ km} = 778300000 \text{ km} \][/tex]
### Summary
Therefore, the distances to each of the objects in kilometers are:
- Object A: [tex]\(58187000 \text{ km}\)[/tex]
- Object B: [tex]\(4509000000 \text{ km}\)[/tex]
- Object C: [tex]\(778300000 \text{ km}\)[/tex]
These values show the distances of the objects in the more universal unit of kilometers.
### Object A: [tex]\(0.000001877 \text{ parsecs}\)[/tex]
We know that:
[tex]\[1 \text{ parsec} = 31 \times 10^{12} \text{ km}\][/tex]
So, we can convert the distance for Object A:
[tex]\[ 0.000001877 \text{ parsecs} \times 31 \times 10^{12} \text{ km/parsec} = 58187000 \text{ km} \][/tex]
### Object B: [tex]\(30.06 \text{ AU}\)[/tex]
We know that:
[tex]\[1 \text{ AU} = 1.5 \times 10^{8} \text{ km}\][/tex]
So, we can convert the distance for Object B:
[tex]\[ 30.06 \text{ AU} \times 1.5 \times 10^{8} \text{ km/AU} = 4509000000 \text{ km} \][/tex]
### Object C: [tex]\(778.3 \text{ million km}\)[/tex]
Object C's distance is already given in kilometers. We note that:
[tex]\[ 1 \text{ million km} = 10^{6} \text{ km} \][/tex]
So, the distance for Object C is:
[tex]\[ 778.3 \text{ million km} = 778.3 \times 10^{6} \text{ km} = 778300000 \text{ km} \][/tex]
### Summary
Therefore, the distances to each of the objects in kilometers are:
- Object A: [tex]\(58187000 \text{ km}\)[/tex]
- Object B: [tex]\(4509000000 \text{ km}\)[/tex]
- Object C: [tex]\(778300000 \text{ km}\)[/tex]
These values show the distances of the objects in the more universal unit of kilometers.