Answer :
Let's analyze the comparison between the two fractions [tex]\(\frac{11}{12}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex].
1. First Fraction: [tex]\(\frac{11}{12}\)[/tex]
- The numerator is 11.
- The denominator is 12.
- To find the decimal value, divide the numerator by the denominator:
[tex]\[ \frac{11}{12} \approx 0.9167 \][/tex]
2. Second Fraction: [tex]\(\frac{2}{3}\)[/tex]
- The numerator is 2.
- The denominator is 3.
- To find the decimal value, divide the numerator by the denominator:
[tex]\[ \frac{2}{3} \approx 0.6667 \][/tex]
3. Comparison:
- Decimal value of [tex]\(\frac{11}{12}\)[/tex]: 0.9167
- Decimal value of [tex]\(\frac{2}{3}\)[/tex]: 0.6667
Since [tex]\(0.9167\)[/tex] is greater than [tex]\(0.6667\)[/tex], we can conclude that:
[tex]\[ \frac{11}{12} > \frac{2}{3} \][/tex]
Therefore, the relationship between the two fractions is [tex]\(\frac{11}{12} > \frac{2}{3}\)[/tex].
1. First Fraction: [tex]\(\frac{11}{12}\)[/tex]
- The numerator is 11.
- The denominator is 12.
- To find the decimal value, divide the numerator by the denominator:
[tex]\[ \frac{11}{12} \approx 0.9167 \][/tex]
2. Second Fraction: [tex]\(\frac{2}{3}\)[/tex]
- The numerator is 2.
- The denominator is 3.
- To find the decimal value, divide the numerator by the denominator:
[tex]\[ \frac{2}{3} \approx 0.6667 \][/tex]
3. Comparison:
- Decimal value of [tex]\(\frac{11}{12}\)[/tex]: 0.9167
- Decimal value of [tex]\(\frac{2}{3}\)[/tex]: 0.6667
Since [tex]\(0.9167\)[/tex] is greater than [tex]\(0.6667\)[/tex], we can conclude that:
[tex]\[ \frac{11}{12} > \frac{2}{3} \][/tex]
Therefore, the relationship between the two fractions is [tex]\(\frac{11}{12} > \frac{2}{3}\)[/tex].