Answer :
Sure, let's break down the solution to the given equation step by step.
### Step-by-Step Solution:
1. Original Equation:
[tex]\[ \frac{-3(x+8)}{-3} = \frac{-21}{-3} \][/tex]
2. Simplifying the Right-Hand Side:
- Simplify the fraction on the right-hand side by dividing [tex]\(-21\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[ \frac{-21}{-3} = 7 \][/tex]
So, the equation becomes:
[tex]\[ \frac{-3(x+8)}{-3} = 7 \][/tex]
3. Simplifying the Left-Hand Side:
- Similarly, simplify the fraction on the left-hand side by dividing [tex]\(-3(x+8)\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[ \frac{-3(x+8)}{-3} = x + 8 \][/tex]
So the equation now looks like this:
[tex]\[ x + 8 = 7 \][/tex]
4. Solving for [tex]\(x\)[/tex]:
- To isolate [tex]\(x\)[/tex], subtract 8 from both sides of the equation:
[tex]\[ x + 8 - 8 = 7 - 8 \][/tex]
Simplify the left-hand and right-hand sides:
[tex]\[ x = -1 \][/tex]
### Conclusion:
So, after solving the equation step by step, we find that:
[tex]\[ x = -1 \][/tex]
Therefore, the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(-1\)[/tex].
### Step-by-Step Solution:
1. Original Equation:
[tex]\[ \frac{-3(x+8)}{-3} = \frac{-21}{-3} \][/tex]
2. Simplifying the Right-Hand Side:
- Simplify the fraction on the right-hand side by dividing [tex]\(-21\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[ \frac{-21}{-3} = 7 \][/tex]
So, the equation becomes:
[tex]\[ \frac{-3(x+8)}{-3} = 7 \][/tex]
3. Simplifying the Left-Hand Side:
- Similarly, simplify the fraction on the left-hand side by dividing [tex]\(-3(x+8)\)[/tex] by [tex]\(-3\)[/tex]:
[tex]\[ \frac{-3(x+8)}{-3} = x + 8 \][/tex]
So the equation now looks like this:
[tex]\[ x + 8 = 7 \][/tex]
4. Solving for [tex]\(x\)[/tex]:
- To isolate [tex]\(x\)[/tex], subtract 8 from both sides of the equation:
[tex]\[ x + 8 - 8 = 7 - 8 \][/tex]
Simplify the left-hand and right-hand sides:
[tex]\[ x = -1 \][/tex]
### Conclusion:
So, after solving the equation step by step, we find that:
[tex]\[ x = -1 \][/tex]
Therefore, the value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(-1\)[/tex].