After a rotation of [tex]\(90^{\circ}\)[/tex] about the origin, the coordinates of the vertices of the image of a triangle are [tex]\(A^{\prime}(6, 3)\)[/tex], [tex]\(B^{\prime}(-2, 1)\)[/tex], and [tex]\(C^{\prime}(1, 7)\)[/tex]. What are the coordinates of the vertices of the pre-image?

A. [tex]\((-3, 6)\)[/tex]

B. [tex]\((2, -1)\)[/tex]

C. [tex]\((7, -1)\)[/tex]

D. [tex]\((3, -6)\)[/tex]



Answer :

To find the coordinates of the vertices of the pre-image of a triangle that has been rotated [tex]$90^{\circ}$[/tex] about the origin, we need to reverse the rotation. Here's the step-by-step explanation:

1. Understand the Geometry of Rotation:
- A [tex]$90^{\circ}$[/tex] rotation about the origin changes each point [tex]$(x, y)$[/tex] to [tex]$(-y, x)$[/tex]. Conversely, to reverse a [tex]$90^{\circ}$[/tex] rotation, we change each point [tex]$(x, y)$[/tex] to [tex]$(y, -x)$[/tex].

2. Given Coordinates of the Image:
- The image vertices after rotation are given as [tex]\(A' (6, 3)\)[/tex], [tex]\(B' (-2, 1)\)[/tex], and [tex]\(C' (1, 7)\)[/tex].

3. Finding the Pre-Image Coordinates:

- For [tex]\(A'\)[/tex]: The coordinates are [tex]\( (6, 3) \)[/tex].
- To reverse the rotation: [tex]\((6, 3) \rightarrow (3, -6)\)[/tex].
- Thus, [tex]\(A\)[/tex] is [tex]\((3, -6)\)[/tex].

- For [tex]\(B'\)[/tex]: The coordinates are [tex]\((-2, 1)\)[/tex].
- To reverse the rotation: [tex]\((-2, 1) \rightarrow (1, 2)\)[/tex].
- Thus, [tex]\(B\)[/tex] is [tex]\((1, 2)\)[/tex].

- For [tex]\(C'\)[/tex]: The coordinates are [tex]\((1, 7)\)[/tex].
- To reverse the rotation: [tex]\((1, 7) \rightarrow (7, -1)\)[/tex].
- Thus, [tex]\(C\)[/tex] is [tex]\((7, -1)\)[/tex].

4. Summary:
- The coordinates of the vertices of the pre-image are:
- [tex]\( A (3, -6) \)[/tex]
- [tex]\( B (1, 2) \)[/tex]
- [tex]\( C (7, -1) \)[/tex]

Hence, the coordinates of the vertices of the pre-image are:
[tex]\( \boxed{ (3, -6), (1, 2), (7, -1) } \)[/tex].