What maximum height will a stone reach if it is thrown upwards with a velocity of [tex]20 \, \text{m/s}[/tex]? (Assume [tex]g = 10 \, \text{m/s}^2[/tex])

कसी पत्थर की अधिकतम ऊँचाई क्या होगी, यदि उसे [tex]20 \, \text{m/s}[/tex] के वेग से ऊपर की ओर फेंका जाए? (गुरुत्वाकर्षण त्वरण [tex]g = 10 \, \text{m/s}^2[/tex])

A. [tex]10 \, \text{m} \, / \, 10 \, \text{मी}[/tex]
B. [tex]20 \, \text{m} \, / \, 20 \, \text{मी}[/tex]
C. [tex]30 \, \text{m} \, / \, 30 \, \text{मी}[/tex]
D. [tex]40 \, \text{m} \, / \, 40 \, \text{मी}[/tex]



Answer :

To find the maximum height that a stone will reach when it is thrown upwards with an initial velocity [tex]\(v = 20 \, \text{m/s}\)[/tex] and [tex]\(g = 10 \, \text{m/s}^2\)[/tex], we can use the following formula from kinematics:

[tex]\[ h = \frac{v^2}{2g} \][/tex]

Here,
- [tex]\(v\)[/tex] is the initial velocity,
- [tex]\(g\)[/tex] is the acceleration due to gravity, and it is given that [tex]\(g = 10 \, \text{m/s}^2\)[/tex].

Let's plug in the values into the formula:

[tex]\[ h = \frac{(20 \, \text{m/s})^2}{2 \times 10 \, \text{m/s}^2} \][/tex]

First, calculate the square of the initial velocity:

[tex]\[ (20 \, \text{m/s})^2 = 400 \, \text{m}^2/\text{s}^2 \][/tex]

Next, multiply the gravity by 2:

[tex]\[ 2 \times 10 \, \text{m/s}^2 = 20 \, \text{m/s}^2 \][/tex]

Now, divide the square of the initial velocity by this product:

[tex]\[ h = \frac{400 \, \text{m}^2/\text{s}^2}{20 \, \text{m/s}^2} = 20 \, \text{m} \][/tex]

Thus, the maximum height the stone will reach is [tex]\(20 \, \text{meters}\)[/tex].

Therefore, the correct answer is [tex]\( B: 20 \, \text{m} (\text{20 मी}) \)[/tex].