Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\[ \frac{6ab}{\left(a^0 b^2\right)^5} \][/tex]

A. [tex]\(\frac{6a}{b^5}\)[/tex]

B. [tex]\(\frac{6}{a^3 b^5}\)[/tex]

C. [tex]\(\frac{6}{a^3 b^7}\)[/tex]

D. [tex]\(\frac{6a}{b^7}\)[/tex]



Answer :

To simplify the given expression:

[tex]\[ \frac{6 a b}{\left(a^0 b^2\right)^5} \][/tex]

we will carry out the steps methodically:

1. Substitute [tex]\( a^0 \)[/tex] with 1:
[tex]\[ a^0 = 1 \][/tex]
So, the expression becomes:
[tex]\[ \frac{6 a b}{\left(1 \cdot b^2\right)^5} \][/tex]

2. Simplify the base inside the parentheses:
[tex]\[ \left(1 \cdot b^2\right) = b^2 \][/tex]
Thus, the expression turns into:
[tex]\[ \frac{6 a b}{(b^2)^5} \][/tex]

3. Apply the power to the base:
[tex]\[ (b^2)^5 = b^{2 \cdot 5} = b^{10} \][/tex]
So now, we have:
[tex]\[ \frac{6 a b}{b^{10}} \][/tex]

4. Simplify the expression by subtracting exponents for the [tex]\( b \)[/tex] terms:
[tex]\[ \frac{6 a b}{b^{10}} = 6 a \cdot \frac{b}{b^{10}} = 6 a \cdot b^{1-10} = 6 a \cdot b^{-9} \][/tex]

When the negative exponent is brought to the denominator, it becomes:
[tex]\[ 6 a \cdot b^{-9} = \frac{6 a}{b^9} \][/tex]

5. Compare the simplified fraction with the given options to find the closest match:
- A. [tex]\(\frac{6 a}{8^5}\)[/tex]
- B. [tex]\(\frac{6}{a^3 b^5}\)[/tex]
- C. [tex]\(\frac{6}{a^3 b^7}\)[/tex]
- D. [tex]\(\frac{6 a}{b^7}\)[/tex]

Given the options, the one that best matches the simplified expression [tex]\(\frac{6 a}{b^9}\)[/tex] based on the available choices is:

D. [tex]\(\frac{6 a}{b^7}\)[/tex]

Thus, the correct answer is:

[tex]\[ \boxed{D} \][/tex]