Answer :
Let's simplify the expression step-by-step:
Given the expression:
[tex]\[ 180 \div 15\{(12 - 6) - (14 - 12)\} \][/tex]
1. Calculate the values inside the brackets first:
- [tex]\((12 - 6)\)[/tex]
[tex]\[ 12 - 6 = 6 \][/tex]
- [tex]\((14 - 12)\)[/tex]
[tex]\[ 14 - 12 = 2 \][/tex]
2. Subtract the second result from the first result inside the curly braces:
- So, we have:
[tex]\[ \{(12 - 6) - (14 - 12)\} = \{6 - 2\} \][/tex]
- Simplifying this:
[tex]\[ 6 - 2 = 4 \][/tex]
3. Divide 180 by 15:
- Calculate:
[tex]\[ 180 \div 15 = 12 \][/tex]
4. Multiply the result of the division by the result inside the curly braces:
- So, we have:
[tex]\[ 12 \times 4 \][/tex]
5. Multiply to get the final result:
- Calculate:
[tex]\[ 12 \times 4 = 48 \][/tex]
Therefore, the simplified result of the expression [tex]\( 180 \div 15\{(12 - 6) - (14 - 12)\} \)[/tex] is [tex]\( 48 \)[/tex].
Given the expression:
[tex]\[ 180 \div 15\{(12 - 6) - (14 - 12)\} \][/tex]
1. Calculate the values inside the brackets first:
- [tex]\((12 - 6)\)[/tex]
[tex]\[ 12 - 6 = 6 \][/tex]
- [tex]\((14 - 12)\)[/tex]
[tex]\[ 14 - 12 = 2 \][/tex]
2. Subtract the second result from the first result inside the curly braces:
- So, we have:
[tex]\[ \{(12 - 6) - (14 - 12)\} = \{6 - 2\} \][/tex]
- Simplifying this:
[tex]\[ 6 - 2 = 4 \][/tex]
3. Divide 180 by 15:
- Calculate:
[tex]\[ 180 \div 15 = 12 \][/tex]
4. Multiply the result of the division by the result inside the curly braces:
- So, we have:
[tex]\[ 12 \times 4 \][/tex]
5. Multiply to get the final result:
- Calculate:
[tex]\[ 12 \times 4 = 48 \][/tex]
Therefore, the simplified result of the expression [tex]\( 180 \div 15\{(12 - 6) - (14 - 12)\} \)[/tex] is [tex]\( 48 \)[/tex].