Type the correct answer in the box. Round your answer to the nearest hundredth.

Element [tex]$X$[/tex] has two isotopes. The table gives information about these isotopes.

[tex]\[
\begin{tabular}{|c|c|c|}
\hline
Isotope & \begin{tabular}{c}
Atomic \\
Mass (amu)
\end{tabular} & \begin{tabular}{c}
Abundance \\
(\%)
\end{tabular} \\
\hline
X-63 & 62.9296 & 69.15 \\
\hline
X-65 & 64.9278 & 30.85 \\
\hline
\end{tabular}
\][/tex]

The average atomic mass of element [tex]$X$[/tex] is [tex]$\square$[/tex] amu.



Answer :

To find the average atomic mass of element [tex]\( X \)[/tex], we will use the isotopic masses and their respective abundances. The formula to calculate the weighted average atomic mass is:

[tex]\[ \text{Average Atomic Mass} = \left( \frac{(\text{Mass of Isotope 1} \times \text{Abundance of Isotope 1}) + (\text{Mass of Isotope 2} \times \text{Abundance of Isotope 2})}{100} \right) \][/tex]

Given the data:
- Isotope X-63 has an atomic mass of 62.9296 amu and an abundance of 69.15%.
- Isotope X-65 has an atomic mass of 64.9278 amu and an abundance of 30.85%.

Now, we substitute these values into the formula.

1. Multiply the atomic mass of X-63 by its abundance:
[tex]\[ 62.9296 \times 69.15 = 4348.31164 \][/tex]

2. Multiply the atomic mass of X-65 by its abundance:
[tex]\[ 64.9278 \times 30.85 = 2001.29286 \][/tex]

3. Add the results from steps 1 and 2:
[tex]\[ 4348.31164 + 2001.29286 = 6349.6045 \][/tex]

4. Divide the sum by 100 to account for the percentage abundance:
[tex]\[ \frac{6349.6045}{100} = 63.496045 \][/tex]

Finally, round the result to the nearest hundredth:
[tex]\[ 63.50 \][/tex]

Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( 63.55 \)[/tex] amu.