Select one:

A. [tex] \frac{5}{3} [/tex]

B. [tex] \sqrt{20} [/tex]

C. [tex] \frac{8}{0.2} [/tex]

D. [tex] 16 \div \left( \frac{1}{4} \right) [/tex]

E. [tex] \sqrt{4} [/tex]



Answer :

Let's evaluate each option one by one:

Option A: [tex]\(\frac{5}{3}\)[/tex]

Dividing 5 by 3 gives us approximately [tex]\(1.6666666666666667\)[/tex].

Option B: [tex]\(\sqrt{20}\)[/tex]

The square root of 20 is approximately [tex]\(4.47213595499958\)[/tex].

Option C: [tex]\(\frac{8}{0.2}\)[/tex]

Dividing 8 by 0.2 results in [tex]\(40.0\)[/tex].

Option D: [tex]\(16 \div \left(\frac{1}{4}\right)\)[/tex]

Dividing 16 by [tex]\(\frac{1}{4}\)[/tex] is equivalent to multiplying 16 by 4, which gives us [tex]\(64.0\)[/tex].

Option E: [tex]\(\sqrt{4}\)[/tex]

The square root of 4 is [tex]\(2.0\)[/tex].

Therefore, the numerical results for each option are as follows:
- Option A: [tex]\(1.6666666666666667\)[/tex]
- Option B: [tex]\(4.47213595499958\)[/tex]
- Option C: [tex]\(40.0\)[/tex]
- Option D: [tex]\(64.0\)[/tex]
- Option E: [tex]\(2.0\)[/tex]

By comparing these results, we can see that each option has a unique value. So, if you need to select one of these options based on a specific criterion, such as which is the largest or smallest value, you can make your choice accordingly.